EN

朱娜

副教授    博士生导师    硕士生导师

个人信息 更多+
  • 性别: 女
  • 在职信息: 在职
  • 所在单位: 环境科学与工程学院
  • 学历: 研究生(博士)毕业
  • 学位: 工学博士学位

其他联系方式

邮编:

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

An optimal control strategy with enhanced robustness for air-conditioning systems considering model and measurement uncertainties

发布时间:2023-04-22
点击次数:
论文类型:
文章
第一作者:
朱娜
通讯作者:
王盛卫
合写作者:
单奎,孙勇军
发表刊物:
Energy and Buildings
收录刊物:
SCI
所属单位:
香港理工大学
刊物所在地:
China
学科门类:
工学
一级学科:
土木工程
项目来源:
Hong Kong Research Grants Council
文献类型:
J
卷号:
67
页面范围:
540-550
ISSN号:
0378-7788
关键字:
Air-conditioning system; Optimal control strategy; Model uncertainty; Measurement uncertainty; Fuzzy c-means clustering; Machine learning
DOI码:
10.1016/j.enbuild.2013.08.050
发表时间:
2013-12-01
影响因子:
7.201
摘要:
Model-based optimal controls in HVAC systems involve uncertainties due to model uncertainties and measurement uncertainties. These uncertainties affect the accuracy and reliability of the outputs of optimal control strategies, and therefore affect the energy and environmental performance of buildings. This study proposes a method to enhance the robustness of optimal control strategies. A fuzzy approach is adopted to predict the errors in models outputs. Such predicted errors are then used to correct the model outputs. The method is validated in an optimal control strategy for HVAC cooling water systems. The operation data of a real building system is used to validate the error prediction method. A simulation platform is built to validate the enhanced strategy. Measurement uncertainties are deliberately added to the simulated system for validation tests. Test results indicate that the method is effective in predicting the errors in model outputs. Significant energy savings are achieved compared with the conventional optimal control method