魏青松

个人信息

Personal information

教授     博士生导师     硕士生导师

性别:男

在职信息:在职

所在单位:材料科学与工程学院

学历:研究生(博士)毕业

学位:工学博士学位

毕业院校:华中科技大学

学科:材料加工工程
曾获荣誉:
2017    华中科技大学学术前沿青年团队负责人
2017    黄鹤英才“专项”计划
2016    江苏省双创人才
2016    华中科技大学师德三育人奖

Bimodal powder optimization in SiC binder jetting for mechanical performance
发布时间:2024-06-09  点击次数:

发表刊物:International Journal of Mechanical Sciences
收录刊物:SCI
DOI码:10.1016/j.ijmecsci.2024.109278
发表时间:2024-04-09
摘要:Binder jetting (BJ) additive manufacturing has emerged as a promising technique for batch production of complex silicon carbide (SiC) ceramic components. However, the utilization of coarse powder in BJ often leads to lower density and strength in green parts and final composites compared to conventional fabrication methods. This study aims to enhance the mechanical performance of SiC ceramics through a novel bimodal SiC powder formulation for BJ, complemented by phenolic resin impregnation and pyrolysis (PRIP) and liquid silicon infiltration (LSI). The optimal ratio of bimodal powder, comprising 75 % coarse and 25 % fine powder, was determined through a comprehensive analysis of the microstructure and properties at various stages of the preparation process. The bimodal powder achieves a packing density of 48.3 % and exhibits satisfactory flowability. Notably, the density of the green part reaches 1.78 g/cm3, which is 31 % and 4.7 % higher than that of unimodal fine and coarse powders, respectively. Following the LSI process, the final Si-SiC composites display a high flexural strength of 276.6 ± 13.3 MPa and fracture toughness of 3.52 ± 0.12 MPa·m1/2. These values represent increases of 42.4 % and 25.3 %, respectively, compared to the composites derived from unimodal coarse powder. The material compositions and fabrication strategies proposed in this work offer an effective pathway for creating high-performance SiC ceramic composites via binder jetting.
发布期刊链接:https://www.sciencedirect.com/science/article/abs/pii/S0020740324003205?via%3Dihub