EN

孟凡玲

副教授    博士生导师    硕士生导师

个人信息 更多+
  • 教师英文名称: Fanling Meng
  • 性别: 女
  • 在职信息: 在职
  • 所在单位: 生命科学与技术学院
  • 学历: 研究生(博士)毕业
  • 学位: 理学博士学位

其他联系方式

邮编:

通讯/办公地址:

办公室电话:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Metal-Mediated Nanobody Assemblies as Potent Alleviator of Human Islet Amyloid Polypeptide Aggregation

发布时间:2023-07-20
点击次数:

发表刊物:
Materials Chemistry Frontiers
期号:
10
ISSN号:
2052-1537
DOI码:
10.1039/D2QM01372J
发表时间:
2023-03-02
影响因子:
8.683
摘要:
he misfolding and aggregation of peptides and proteins into β-sheet-enriched amyloid fibrils has been implicated in many human diseases. Inhibition of protein aggregation by engineered nanobodies has shown great promise in the treatment of amyloid-associated diseases. Taking type 2 diabetes associated human islet amyloid polypeptide (IAPP) aggregation as a model system, we generated a nanobody inhibitor by grafting the IAPP peptide fragment into the complementary determining region of a parent nanobody to inhibit IAPP aggregation through homotypic interactions. In addition, we developed a facile fabrication strategy to amplify the inhibitory effects of the designed nanobody inhibitor on IAPP aggregation. By coordinating a metal cation Zn2+ with a histidine-tag-fused nanobody inhibitor M1, the achieved nanobody assemblies M1@Zn2+ can significantly enhance the binding affinity between IAPP and M1 through the multivalent effects. At low substoichiometric concentrations (20 : 1 IAPP : nanobody molar ratio), M1@Zn2+ are capable of efficiently inhibiting IAPP aggregation, alleviating IAPP-induced cytotoxicity and downregulating ROS generation. This strategy represents an innovative attempt to design high-efficiency amyloid antibody inhibitors with enhanced therapeutic effects for the treatment of amyloid diseases.