• English

  • 华中科技大学

刘遹菡 副教授

博士,硕士生导师。中国新闻技术工作者联合新闻信息标准化分会委员,湖北省编辑学会会员,西藏自治区唐卡艺术与文化协会会员;主持教育部人文社科基金、国家重点研发计划子课题、国家科技专项项目子课题、湖北省社科等项目,参与多项国家自科、国家社科、教育部人文社科、湖北省重点研发计划等项目。发表高水平论文10余篇,出版专著1部。研究方向:文化数字化、数字内容知识服务、生成式人工智能设计。获得王选新闻科学技术奖、中国产学研合作与创新促进奖、武汉市社科奖等多项奖励,带领学生获得多项互联网+、NCDA、米兰设计周、好创意等国家级设计竞赛奖项、获得校优秀班主任等荣誉。

查看更多>>

Mixture of Experts Residual Learning for Hamming Hashing

发布时间:2024-06-13 点击次数:

  • 论文类型:期刊论文
  • 第一作者:徐锦宇
  • 通讯作者:解庆
  • 合写作者:马艳春,李佳琛,刘遹菡
  • 发表刊物:Neural Processing Letters
  • 收录刊物:SCI
  • 学科门类:工学
  • 一级学科:计算机科学与技术
  • 文献类型:J
  • 关键字:Image retrieval · Hamming hashing · Mixture of experts · Attentional mechanism
  • 摘要:Image retrieval has drawn growing attention due to the rapid emergence of images on the Internet. Due to the high storage and computation efficiency, hashing methods are widely employed in approximate nearest neighbor search for large-scale image retrieval. Existing deep supervised hashing methods mainly utilize the labels to analyze the semantic similarity and preserve it in hash codes, but the collected label information may be incomplete or unreliable in real-world. Meanwhile, the features extracted by a single convolutional neural network (CNN) from complex images are difficult to express the latent information, or potential to miss certain semantic information. Thus, this work further exploits existing knowledge from the pre-trained semantic features of higher quality, and proposes mixture of experts residual learning for Hamming hashing (MoE-hash), which brings in the experts forimage hashing in Hamming space. Specifically, we separately extract the basic visual features by a CNN, and different semantic features by existing expert models. To better preserve the semantic information in compact hash codes, we learn the hash codes by the mixture of experts (MoE) residual learning block with max-margin t-distribution-based loss. Extensiveexperiments on MS-COCO and NUS-WIDE demonstrate that our model can achieve clear improvement in retrieval performance, and validate the role of mixture of experts residual learning in image hashing task.