·Paper Publications
Indexed by: Research Article
First Author: Shi,Hao
Correspondence Author: Wang,Tanyuan,Li,Qing
Co-author: Elbaz,Lior,Huang,Yunhui,Su,Dong,Wang,Chao,Cai,Zhao,Xuan,Shuxia,Liang,Jiashun,Li,Shenzhou,Chen,Weiwei,Liu,]Jianyun
Journal: Nature Communications
Affiliation of Author(s): 华中科技大学
Place of Publication: 英国
Document Type: Article
Volume: 14
Issue: 1
Page Number: 3934
ISSN No.: 2041-1723
Key Words: Hydrogen Evolution; Water; Energy; Catalyst; Oxygen
DOI number: 10.1038/s41467-023-39681-1
Date of Publication: 2023-07-06
Impact Factor: 14.7
Abstract: Hydrogen produced from neutral seawater electrolysis faces many challenges including high energy consumption, the corrosion/side reactions caused by Cl-, and the blockage of active sites by Ca2+/Mg2+ precipitates. Herein, we design a pH-asymmetric electrolyzer with a Na+ exchange membrane for direct seawater electrolysis, which can simultaneously prevent Cl- corrosion and Ca2+/Mg2+ precipitation and harvest the chemical potentials between the different electrolytes to reduce the required voltage. In-situ Raman spectroscopy and density functional theory calculations reveal that water dissociation can be promoted with a catalyst based on atomically dispersed Pt anchored to Ni-Fe-P nanowires with a reduced energy barrier (by 0.26 eV), thus accelerating the hydrogen evolution kinetics in seawater. Consequently, the asymmetric electrolyzer exhibits current densities of 10 mA cm−2 and 100 mA cm−2 at voltages of 1.31 V and 1.46 V, respectively. It can also reach 400 mA cm−2 at a low voltage of 1.66 V at 80 °C, corresponding to the electricity cost of US$1.36 per kg of H2 ($0.031/kW h for the electricity bill), lower than the United States Department of Energy 2025 target (US$1.4 per kg of H2).