EN

余创

教授    博士生导师    硕士生导师

个人信息 更多+
  • 教师英文名称: Chuang Yu
  • 性别: 男
  • 在职信息: 在职
  • 所在单位: 电气与电子工程学院
  • 学历: 研究生(博士)毕业
  • 学位: 工学博士学位

其他联系方式

邮编:

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Tuning ionic conductivity to enable all-climate solid-state Li-S batteries with superior performances

发布时间:2022-02-08
点击次数:
论文类型:
期刊论文
发表刊物:
Materials Advances
所属单位:
School of Electrical and Electronic Engineering, Huazhong University of Science and Technology
学科门类:
理学
文献类型:
J
卷号:
3
页面范围:
1047-1054
DOI码:
10.1039/D1MA00987G
发表时间:
2021-11-18
摘要:
Low Li-ion mobility of the cathode mixture is one of the major obstacles for Li2S-based solid-state Li–S achieving excellent electrochemical performances. The poor Li-ion conductivity is due to the intrinsic insulation of Li2S and the low Li-ion mitigation across the Li2S/solid electrolyte interface. Here, we propose the correlation between the increased Li-ion conductivity of the cathode mixture and electrochemical performances of solid-state batteries using Li2S as an active material. Replacing Li6PS5Cl with a superior conductive Li5.5PS4.5Cl1.5 solid electrolyte increases the interfacial ionic mobility and reduces the solid/solid resistance, resulting in higher discharge capacities and better cycling performances. In addition, the Li-ion conductivity of Li2S is enhanced by reducing the particle sizes using high-rotation milling, and a further improvement is achieved by mixing the obtained milled Li2S with LiI. The 3Li2S–LiI cathode mixture with high room temperature ionic conductivity and a comparable Li2S loading amount is chosen as the cathode and combined with the Li5.5PS4.5Cl1.5 solid electrolyte to fabricate solid-state Li–S batteries. The assembled battery displays excellent electrochemical performances at different operating temperatures. Our findings in this work could help to promote the development of Li2S-based solid-state Li–S batteries.