能源与动力工程学院
旧版入口| 学校主页| English| 加入收藏 | 设为首页

师资队伍

teaching staff

热点文章

站内搜索

教授

当前位置: 首 页 > 师资队伍 > 储能科学与工程系 > 教授 > 正文
姓 名 刘德欢 性 别
职 称 教授 毕业学校 台湾大学
个人主页 /hust/mu_energy/mu_x-thermal/index.htm
联系方式
邮 箱 thliu@hust.edu.cn
通讯地址 清洁能源大楼S708室
个人资料简介
刘德欢,教授、博士生导师、入选第十五批海外高层次人才引进计划“青年项目”。2012年获台湾大学应用力学所博士学位;2015年至2019年在麻省理工学院陈刚院士课题组任博士后研究员。从事纳微米尺度热、电输运等理论/计算研究,具体方向为:(1)芯片/能源半导体中声子-声子、电子-声子耦合及能量转换;(2)神经网络势能在固体材料热学输运中的应用;(3)固态电解质体系中的离子输运与热传递现象。主持/参与基金委面上项目1项、科技部重点研发项目1项、校级交叉研究支持计划1项;中国工程热物理学会传热传质年会分论坛特邀报告(2020年、2022年)、EPW-nano计算软件主要开发者;发表论文获麻省理工学院官网首页全版报道、PHYS.ORG、Green Car Congress、麻省理工科技评论等国内外科技媒体报道。迄今在PNAS、Adv Mater、InfoMat、Angew Chem Int Ed、Cell Rep Phys Sci、npj Comput Mater等学术期刊发表论文50余篇,ESI高被引论文4篇,h指数25。
谷歌学术:https://scholar.google.com/citations?user=fQd38KwAAAAJ&hl

教育及工作经历

    2019.02 - 至今           华中科技大学,能源与动力工程学院,教授
    2015.01-2019.01     麻省理工学院,机械工程学系,博士后研究员
    2013.05-2014.12     台湾大学,理论科学研究中心,博士后研究员
    2008.09-2012.06     台湾大学,应用力学研究所,博士
    2006.09-2008.06     台湾大学,应用力学研究所,硕士
    2002.09-2006.06     中央大学,机械工程学系,本科

研究方向

    11. 芯片半导体电声耦合机理及热、电学性质相互调控
    2. 热电材料能量转换及输运性质研究
    3. 适用于包含掺杂/缺陷/合金的真实固体材料统一神经网络势能开发
    4. 固态锂离子电池中的离子及热输运现象

科研项目

    自然科学基金委,面上项目,52076089,2021/01-2024/12,课题负责人
    科技部,重点研发项目,2022YFB3803900,2022/11-2025/10,骨干成员
    华中科技大学,交叉研究支持计划,2023JCYJ004,2023/01-2025/12,子课题负责人

代表性论文与专利

    *通讯作者,¶共同一作
    1.J. Zhang, J. Zhang, G. Bao, Z. Li, X. Li*, T. H. Liu*, and R. Yang*, “Prediction of phonon properties of cubic boron nitride with vacancy defects and isotopic disorders by using a neural network potential”, Applied Physics Letters 124, 152206-1-6, 2024.
    2.Y. Zhu¶, T. H. Liu¶, W. Zhou, M. Shi, M. Wu, P. Shi, N. Zhao, X. Li, Z. Zhang, D. Zhang, Y. Lv, W. Wu, H. S. Tsai, G. Lai, L. Fu, H. Karimi-Maleh, H. Li, N. Jiang, C. Ye, and C. T. Lin, “An on-site transformation strategy for electrochemical formation of TiO2 nanoparticles/Ti3C2Tx MXene/reduced graphene oxide heterojunction electrode controllably toward ultrasensitive detection of uric acid”, Small Structures (Accepted)
    3.W. Zhou, T. H. Liu, and B. Song, “Isotope engineering of carrier mobility via Fröhlich electron-phonon interaction”, Physical Review B: Letters 109, L121201-1-7, 2024.
    4.J. Zhang, X. Wang, F. Yang, J. Wu, Y. Wang, B. Song*, and T. H. Liu*, “Bulk-like phonon transport in multilayer graphene nanostructures with consecutive twist angles”, Surfaces and Interfaces 45, 103893-1-10, 2024.
    5.J. Zhang, H. Zhang, J. Wu, X. Qian, B. Song, C. T. Lin*, T. H. Liu*, and R. Yang*, “Vacancy-induced phonon localization in boron arsenide using a unified neural network interatomic potential”, Cell Reports Physical Science 5, 101760-1-19, 2024.
    6.G. Li, J. Tang, J. Zheng, Q. Wnag, Z. Cui, K. Xu, J. Xu, T. H. Liu*, G. Zhu*, R. Guo*, and B. Li, “Convergent thermal conductivity in strained monolayer graphene”, Physical Review B 109, 035420-1-10, 2024.
    7.H. Guo, W. Yan, J. Sun, Y. Pan, H. He, Y. Zhang, F. Yang, Y. Wang, C. Zhang, R. Li, L. Liu, S. Bai, W. Wang, Y. Ye, T. H. Liu, J. Shiomi, X. Zhang, and B. Song, “Four-phonon scattering and thermal transport in 2H-MoTe2”, Materials Today Physics 40, 101314-1-7, 2024.
    8.F. Jia, S. Zhao, J. Wu, C. Lin*, T. H. Liu*, and L. M. Wu*, “Cu3BiS3: two-dimensional coordination induces out-of-plane phonon scattering enabling ultralow thermal conductivity”, Angewandte Chemie International Edition 135, e202315642-1-6, 2023. (Very Important Paper)
    9.H. Uchiyama, T. H. Liu, T. Ono, J. Fujise, B. Liao, S. Ju, G. Chen, and J. Shiomi, “Quantifying doping-dependent electron-phonon scattering rates in silicon by inelastic x-ray scattering and first-principles lattice dynamics”, Physical Review Materials 7, 104601-1-7, 2023.
    10.T. Wang, X. Duan, H. Zhang, J. Ma, H. Zhu, X. Qian, J. Y. Yang*, T. H. Liu*, and R. Yang*, “Origins of three-dimensional charge and two-dimensional phonon transports in Pnma phase PbSnSe2 thermoelectric crystals”, InfoMat 5, e12481-1-12, 2023.
    11.G. Sun, J. Ma, C. Liu, Z. Xiang, D. Xu*, T. H. Liu*, and X. Luo, “Four-phonon and normal scattering in 2D hexagonal structures”, International Journal of Heat and Mass Transfer 215, 124475-1-6, 2023.
    12.Y. Chen, Q. Huang, T. H. Liu, X. Qian, and R. Yang, “Effect of solvation shell structure on thermopower of liquid redox pairs”, EcoMat 5, e12385-1-12, 2023. (Cover Image)
    13.L. Chen¶, T. H. Liu¶, X. Wang, Y. Wang, X. Cui, Q. Yan, L. Lv, J. Ying, J. Gao, M. Han, J. Yu, C. Song, J. Gao, R. Sun, C. Xue, N. Jiang, T. Deng, K. Nishimura, R. Yang, C. T. Lin, and W. Dai, “Near-theoretical thermal conductivity silver nanoflakes as reinforcements in gap-filling adhesives”, Advanced Materials 35, 2211100-1-13, 2023.
    14.J. Wu, H. Zhang, T. Wang, X. Qian, B. Song*, T. H. Liu*, and R. Yang*, “Ab initio study of pressure-dependent phonon heat conduction of cubic boron nitride”, International Journal of Heat and Mass Transfer 208, 124092-1-10, 2023
    15.T. Lu, B. Wang, G. Li, J. Yang, X. Zhang, N. Chen, T. H. Liu, R. Yang, P. Niu, Z. Kan, H. Zhu, and H. Zhao, “Synergistically enhanced thermoelectric and mechanical performance of Bi2Te3 via industrial scalable hot extrusion method for cooling and power generation applications”, Materials Today Physics 32, 101035-1-10, 2023
    16.Z. Xiong, Z. Wang, W. Zhou, Q. Liu, J. F. Wu*, T. H. Liu*, C. Xu, and J. Liu*, “4.2 V polymer all-solid-state lithium batteries enabled by high-concentration PEO solid electrolytes”, Energy Storage Materials 57, 171-179, 2023.
    17.Y. Wei, T. H. Liu, W. Zhou, H. Cheng, X. Liu, J. Kong, Y. Shen, H. Xu, and Y. Huang, “Enabling all-solid-state Li metal batteries operated at 30 °C by molecular regulation of polymer electrolyte”, Advanced Energy Materials 13, 2203547-1-12, 2023
    18.Y. Dai, W. Zhou, H. J. Kim, Q. Song, X. Qian, T. H. Liu*, and R. Yang*, “Simultaneous enhancement in electrical conductivity and Seebeck coefficient by single- to double-valley transition in a Dirac-like band”, npj Computational Materials 8, 234-1-8, 2022.
    19.W. Zhou, Y. Dai, J. Zhang, B. Song*, T. H. Liu*, and R. Yang*, “Effect of four-phonon interaction on phonon thermal conductivity and mean-free-path spectrum of high-temperature phase SnSe”, Applied Physics Letters 121, 112202-1-6, 2022. (Editor’s pick)
    20.X. Tan¶, T. H. Liu¶, W. Zhou, Q. Yuan, J. Ying, Q. Yan, L. Lv, L. Chen, X. Wang, S. Du, Y. J. Wan, R. Sun, K. Nishimura, J. Yu, N. Jiang, W. Dai, and C. T. Lin, “Enhanced electromagnetic shielding and thermal conductive properties of polyolefin composites with a Ti3C2Tx MXene/graphene framework connected by a hydrogen-bonded interface”, ACS Nano 16, 9254-9266, 2022.
    21.X. Qian, T. H. Liu, and R. Yang, “Confinement effect on thermopower of electrolytes”, Materials Today Physics 23, 100627-1-10, 2022.
    22.T. H. Liu*, J. Zhou, Q. Xu, X. Qian, B. Song, and R. Yang*, “Significant suppression of phonon transport in polar semiconductors owing to electron-phonon-induced dipole coupling: an effect of breaking centrosymmetry”, Materials Today Physics 22, 100598-1-7, 2022.
    23.W. Zhou, Y. Dai, T. H. Liu*, and R. Yang*, “Effects of electron-phonon intervalley scattering and band non-parabolicity on electron transport properties of high-temperature phase SnSe: an ab initio study”, Materials Today Physics 22, 100592-1-8, 2022.
    24.Q. Xu, J. Zhou, T. H. Liu, and G. Chen, “First-principles study of all thermoelectric properties of Si-Ge alloys showing large phonon drag from 150 to 1100 K”, Physical Review Applied 16, 064052-1-12, 2021.
    25.J. Ying, X. Tan, L. Lv, X. Wang, J. Gao, Q. Yan, H. Ma, K. Nishimura, H. Li, J. Yu, T. H. Liu, R. Xiang, R. Sun, N. Jiang, C. Wong, S. Maruyama, C. Lin, and W. Dai, “Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates”, ACS Nano 15, 12922-12934, 2021.
    26.W. Dai, L. Lv, T. Ma, X. Wang, J. Ying, Q. Yan, X. Tan, J. Gao, C. Xue, J. Yu, Y. Yao, Q. Wei, R. Sun, Y. Wang, T. H. Liu, T. Chen, R. Xiang, N. Jiang, Q. Xue, C. P. Wong, S. Maruyama, and C. T. Lin, “Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management”, Advanced Science 8, 2003734-1-15, 2021.
    27.Q. Xu, J. Zhou, T. H. Liu, and G. Chen, “Effect of electron-phonon interaction on lattice thermal conductivity of SiGe alloys”, Applied Physics Letters 115, 023903-1-4, 2019.
    28.Z. Ding, J. Zhou, B. Song, M. Li, T. H. Liu, and G. Chen, “Umklapp scattering is not necessarily resistive”, Physical Review B: Rapid Communications 98, 180302(R)-1-6, 2018.
    29.T. H. Liu, B. Song, L. Meroueh, Z. Ding, Q. Song, J. Zhou, M. Li, and G. Chen, “Simultaneously high electron and hole mobilities in cubic boron-V compounds: BP, BAs and BSb”, Physical Review B: Rapid Communications 98, 081203(R)-1-7, 2018.
    30.F. Tian, B. Song, X. Chen, N. K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. Zhou, T. H. Liu, M. Goni, Z. Ding, J. Sun, G. A. G. U. Gamage, H. Sun, H. Ziyaee, S. Huyan, L. Deng, J. Zhou, A. J. Schmidt, S. Chen, C. W. Chu, P. Y. Huang, D. Broido, L. Shi, G. Chen, and Z. Ren, “Unusual high thermal conductivity in boron arsenide bulk crystals”, Science 361, 582-585, 2018.
    31.J. Zhou, H. Zhu, T. H. Liu, Q. Song, R. He, J. Mao, Z. Liu, W. Ren, B. Liao, D. J. Singh, Z. F. Ren, and G. Chen, “Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers”, Nature Communications 9, 1721-1-9, 2018.
    32.Z. Liu, J. Mao, T. H. Liu, G. Chen, and Z. Ren, “Nano-microstructural control of phonon engineering for thermoelectric energy harvesting”, MRS Bulletin 43, 181-186, 2018.
    33.T. H. Liu, J. Zhou, M. Li, Z. Ding, Q. Song, B. Liao, L. Fu, and G. Chen, “Electron mean-free-path filtering in Dirac material for improved thermoelectric performance”, Proceedings of the National Academy of Sciences of the United States of America 115, 879-884, 2018.
    34.F. Tian, B. Song, B. Lv, J. Sun, S. Huyan, Q. Wu, J. Mao, Y. Ni, Z. Ding, S. Huberman, T. H. Liu, G. Chen, S. Chen, C. W. Chu, and Z. Ren, “Seeded growth of boron arsenide single crystals with high thermal conductivity”, Applied Physics Letters 112, 031903-1-4, 2018.
    35.Z. Ding, J. Zhou, B. Song, V. Chiloyan, M. Li, T. H. Liu, and G. Chen, “Phonon hydrodynamic heat conduction and Knudsen minimum in graphite”, Nano Letters 18, 638-649, 2018.
    36.M. Li, Q. Song, W. Zhao, J. A. Garlow, T. H. Liu, L. Wu, Y. Zhu, J. Moodera, M. H. W. Chan, G. Chen, and C. Z. Chang, “Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures”, Physical Review B: Rapid Communications 96, 201301(R)-1-5, 2017.
    37.Q. Song, T. H. Liu, J. Zhou, Z. Ding, and G. Chen, “Ab initio study of electron mean free paths and thermoelectric properties of lead telluride”, Materials Today Physics 2, 69-77, 2017. (Editor’s choice)
    38.M. Li, Q. Song, T. H. Liu, L. Meroueh, G. Mahan, M. S. Dresselhaus, and G. Chen, “Tailoring superconductivity with quantum dislocations”, Nano Letters 17, 4604-4610, 2017.
    39.T. H. Liu, J. Zhou, B. Liao, D. J. Singh, and G. Chen, “First-principles mode-by-mode analysis for electron-phonon scattering channels and mean free path spectra in GaAs”, Physical Review B 95, 075206-1-11, 2017.
    40.T. H. Liu and C.C. Chang, “Anisotropic thermal transport in phosphorene: effects of crystal orientation”, Nanoscale 7, 10648-10654, 2015.
    41.Y. C. Chen, S. C. Lee, T. H. Liu*, and C. C. Chang*, “Thermal conductivity of boron nitride nanoribbons: anisotropic effects and boundary scattering”, International Journal of Thermal Sciences 94, 72-78, 2015.
    42.T. H. Liu, Y. C. Chen, C. W. Pao, and C. C. Chang, “Anisotropic thermal conductivity of monolayer MoS2 nanoribbons: chirality and edge effects”, Applied Physics Letters 104, 201909-1-5, 2014.
    43.T. H. Liu, C. W. Pao, and C. C. Chang, “Mechanical mutability of polycrystalline graphene from atomistic simulations”, Computational Materials Science 91, 56-61, 2014.
    44.T. H. Liu, S. C. Lee, C. W. Pao, and C. C. Chang, “Anomalous thermal transport along grain boundaries of bicrystalline graphene nanoribbons from atomistic simulations”, Carbon 73, 432-442, 2014.
    45.T. H. Liu, C. W. Pao, and C. C. Chang, “An analytical model for calculating thermal properties of two-dimensional nanomaterials”, Applied Physics Letters 103, 171909-1-5, 2013.
    46.T. H. Liu, C. W. Pao, and C .C. Chang, “Thermal response of grain boundaries in graphene sheets under shear strain from atomistic simulations”, Computational Materials Science 70, 163-170, 2013.
    47.M. Y. Lin, W. C. Guo, M. H. Wu, P. Y. Wang, T. H. Liu, C. W. Pao, C. C. Chang, S. C. Lee, and S. Y. Lin, “Low-temperature grown graphene films by using molecular beam epitaxy”, Applied Physics Letters 101, 221911-1-4, 2012.
    48.T. H. Liu, C. W. Pao, and C. C. Chang, “Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations”, Carbon 50, 3465-3472, 2012.
    49.C. W. Pao, T. H. Liu, and C. C. Chang, D. J. Srolovitz, “Graphene defect polarity dynamics”, Carbon 50, 2870-2876, 2012.
    50.A. Y. Lu, S. Y. Wei, C. Y. Wu, Y. Hernandez, T. Y. Chen, T. H. Liu, C. W. Pao, F. R. Chen, L. J. Li, and Z. Y. Juang, “Decoupling of CVD graphene by controlled oxidation of recrystallized Cu”, RSC Advances 2, 3008-3013, 2012.
    51.T. H. Liu, G. Gajewski, C. W. Pao, and C. C. Chang, “Structure, energy, and structural transformations of graphene grain boundaries from atomistic simulations”, Carbon 49, 2306-2317, 2011.

所获荣誉和奖励

    2012年台湾力学学会博士学位论文奖(热流能源组,1/1)