• 信箱
  • 捐赠
  • 常用资源
  • 旧版网站
  • English

学术活动

首页 - 学术活动 - 正文

【学术通知】清华大学副教授 毛小介 :Identification and Estimation of Long-term Treatment Effects via Data Combination

  • 发布日期:2024-12-31
  • 点击数:

  

喻园管理论坛2025年第1期(总第1042期)

演讲主题:Identification and Estimation of Long-term Treatment Effects via Data Combination

主讲人:毛小介清华大学副教授

主持人:邓世名供应链管理与系统工程系教授

活动时间:2025年1月7日(周二)9:30-11:00

活动地点:管院大楼119室

主讲人简介:

毛小介,清华大学经济管理学院管理科学与工程系副教授。2016年获武汉大学数理经济与数理金融专业学士学位,2021年获得美国康奈尔大学统计与数据科学专业博士学位。主要研究方向为因果推断、数据驱动的决策理论与方法。相关研究成果发表于Management Science、Operations Research、Journal of Machine Learning Research、Journal of the Royal Statistical Society Series B、NeurIPS、ICML、AISTATS、COLT等国际知名学术期刊和学术会议。现主持国家自然科学基金优秀青年项目和青年项目。

活动简介:

In this talk, I will talk about the problem of identifying and estimating the treatment effect of a certain intervention (e.g., a product design or a therapy) on some long-term outcome of interest (e.g., users' long-term satisfaction or patients' long-term health). This problem is very challenging: randomized experiments are gold-standard for causal inference but they are often expensive and have short durations, so long-term outcome observations may not be available; observational studies can be cheaper and more likely to collect observations for long-term outcomes, but they are susceptible to confounding bias. In the first part of this talk, I will review some recent literature that addresses this challenge by combining experimental and observational data and leveraging their complementary strengths. I will discuss major assumptions in the literature and discuss their strengths and limitations. In the second part of this talk, I will present my latest work on long-term causal inference under a confounding model that is more general than those in the existing literature.

学院要闻

  • 1
  • 2
  • 3
  • 4
  • 5