报告讲座

当前位置: 首页 > 学院要闻 > 报告讲座 > 正文
分类

Oliver Bringmann: Optimizing Battery-Electric Range by Advanced Driving and Operation Strategies

报告时间:2016年7月4日(星期一)上午09:30

报告地点:屯溪路校区格物楼二楼报告厅

报 告 人:Oliver Bringmann教授

工作单位:德国图宾根大学

举办单位:汽车与交通工程学院

报告人简介:

Oliver Bringmann教授在德国卡尔斯鲁尔大学计算机系获得硕士学位。2001年在图宾根大学获得计算机学科的博士学位。此后,就职于卡尔斯鲁尔信息研究中心(FZI)。曾担任该中心智能系统与生产工程部部长及微电子系统设计研究组组长,属FZI管理层成员。现任德国图宾根大学教授、计算机学院副院长,兼嵌入式系统教研室主任和卡尔斯鲁尔信息研究中心(FZI)的部门负责人。

Bringmann教授的研究领域包含分布式嵌入式系统和系统芯片的设计、分析和验证;具体研究领域包括电动汽车的能量管理系统,自动驾驶的安全架构,健全性验证及虚拟负荷测试,嵌入式系统性能,功率及热分析以及嵌入式系统从系统层到下线的设计。在此领域,Bringmann教授发表150多篇学术论文。Bringmann教授是DATE执行委员会的成员并是多个国际会议(DAC,CASES ,DATE, DSD, CODES-ISSS等)专家委员会的成员。

报告摘要:

电池驱动的电动汽车提供了免二氧化碳排放的运输可能。然而电动汽车的市场普及受到该技术的一些缺点的阻碍。单次充电后过短的行驶里程,过高的成本,以及长时间的充电时间令消费者望而却步。我们的研究工作试图解决这些问题。通过利用新兴的传感器技术提供的数据信息,构建能量优化的驾驶和操作策略来代替现有的增加电池容量或进行车辆机械改造的成本昂贵的解决方案。本讲座将介绍几种用以提高电动汽车的行驶里程的研究成果。这些成果都成功地在实验电动车上进行了评估。首先介绍的是一个新颖的扭矩分配算法。该算法通过优化过度运转的动力系统来提高试验车的能量效率并由一个绿色巡航控制系统根据实时路况信息调节电动汽车的车速。

电动汽车面临的另一个挑战是冷暖空调系统的高耗能问题。该系统的能耗仅次于动力系统。讲座介绍的第二个成果是通过结合我们自主研发的多个策略来降低冷暖空调系统的能耗。实验数据显示我们这方面的研究成果可以在仅提高8%的行驶时间的情况下提高电动汽车26%的行驶里程。讲座将介绍这些系统的基本原理,仿真及公共道路实验结果并对电动汽车的里程优化与行使时间的权衡进行讨论。

Battery electric vehicles offer the possibility of CO2-emission free transportation. The broad market penetration, however, is hindered by several shortcomings of the technology. The limited driving range, high cost and long charging times discourage consumers. Our research is addressing this issue by utilizing information from upcoming sensor technologies to build energy-optimized driving and operation strategies instead of using cost-expensive solutions for driving range optimization based on an enlarged battery capacity or mechanical changes. This talk will present different approaches for driving range optimization which have been successfully evaluated by an experimental battery electric vehicle: A novel torque distribution algorithm exploits the overactuated powertrain of the demonstrator vehicle to increase the energy-efficiency, while a green cruise control system is adaptively optimizing speed profiles according to real time data on the currently driven road. Another challenging issue specific to battery electric vehicle is the high energy consumption for climate control (HVAC), which is second only to the powertrain. By combining the developed strategies, an increase in range of 26% was possible on a public road at a cost of only 8% increased travel time. Both, the basic principles of the systems as well as a detailed view on the results achieved in simulation and on public road driving tests will be displayed during the presentation including a trade-off discussion between range optimization and travel time.

上一条:郭仁拥:Are we really solving the dynamic traffic equilibrium problem with a departure time choice? 下一条:Oliver Bringmann: Optimizing Battery-Electric Range by Advanced Driving and Operation Strategies

关闭