通知公告

通知公告

您的位置:首页  通知公告

基金委关于发布多物理场高效飞行科学基础与调控机理重大研究计划2022年度项目指南的通告
发布时间:2022-05-19

各有关单位、各位老师:

国家自然科学基金委员会现发布多物理场高效飞行科学基础与调控机理重大研究计划2022年度项目指南。请各有关单位仔细研读指南和形式审查等条件要求,积极申报。现将有关事宜通知如下:

一、科学目标

  瞄准中国航天运输系统国家重大需求,提出跨域高效智能飞行新思路,面向跨域、变构、可重复飞行关键特征,建立非定常空气动力学模型,发展多物理参数实时感知与智能控制理论,突破主动热防护、变构型机构-结构设计、主动流动控制和电磁力热环境模拟与科学实验等关键技术,取得一批多物理场高效飞行原创性成果,牵引学科深度融合与创新发展,革新面向航天巨系统的智能系统工程范式,为我国未来航天运输系统提供关键理论、方法、技术和人才队伍储备,促进中国航天运输系统发展规划的顺利实施。

二、核心科学问题

  本重大研究计划围绕以下三个核心科学问题开展研究:

  (一)变构型材料与机构的多物理场耦合机理

  揭示柔性材料-变形机构在复杂约束下热防护、变形机构与结构、刚柔耦合等机理,建立结构健康监测、耐久性与损伤容限评价新方法,满足对飞行器变构材料与机构的极限需求。

  (二)跨域非稳态流动模型及调控机制

  研究复杂时变边界条件下飞行器流动与飞行变形的相互作用机制,发展主动流动调控手段,实现气动特性精确预示和高效降热减阻。

  (三)变构与飞行的一体化智能控制

  揭示强不确定环境下飞行动力学耦合控制机理,突破跨域无缝自主导航及环境-任务自匹配的在线自主规划决策等关键技术,构建变构型与飞行器的一体化智能控制方法。

三、2022年度资助的研究方向

(一)培育项目

  围绕上述科学问题,以总体科学目标为牵引,拟资助一批探索性强、选题新颖、前期研究基础较好的培育项目,研究方向如下(申报项目须覆盖以下单一方向中列出的部分或全部内容):

1、多物理场高效飞行新概念热防护原理与方法

  探索适应跨域变构高速飞行环境的高维变形、可重复使用的热防护新原理与新方法。研究高温热端部件新概念材料、结构及成型工艺基础理论;构建跨域变构高速飞行器结构健康监测与寿命评估模型;发展新概念柔性热防护材料的制备调控与表征方法;揭示受限空间复杂网络冷却工质增压输送主要机制。

2.、飞行器变构型机构与结构设计原理与方法

  探索适应跨域变构飞行的快速响应、大承载机构与结构设计新原理与新方法。研究变形胞元构型综合与多维度变形机构构建方法;探索轻质大变形蒙皮结构实现机制;发展变构型高功重比驱动与高效传动方法;揭示苛刻约束下飞行器机构变构型及承载机理。

3、跨域变构飞行非定常空气动力学理论 

  探索跨域变构高速飞行器非定常空气动力学理论与方法。考虑非线性本构应力/热流小扰动量、多组分扩散与化学反应条件、不同空域过渡区的特殊问题等因素;研究跨域变构飞行器边界层流动稳定性分析理论;建立跨域流动控制方程与气固边界模型;发展跨域高温非平衡与稀薄效应耦合计算、气动载荷人工智能建模与气动参数辨识方法;跨域高速飞行器新概念环境/气动布局/飞控智能耦合方法。

4、多物理场环境下跨域变构飞行主动流动调控理论及实验测试方法

  探索适应跨域变构飞行器降热、减阻和机动性提升要求的流场主动调控新概念与新方法。提出主动流动调控新技术;研究降热减阻实现机制;建立高精度观测与气动力热原位测试新方法;揭示大空域宽速域条件下流动调控效能演变规律。

5、电磁力热多物理场环境地面模拟与测量

  探索跨域高效飞行气动力热及高密度等离子体地面模拟新技术与新方法。研究等离子体与电磁、流动、材料特性等多物理场耦合理论;揭示大功率高频感应耦合放电、低扰动等离子体射流产生机制;发展等离子体流场及变形结构的电磁力热多参数耦合测量方法。

6、跨域飞行器多学科建模及高效分析方法

  探索电磁力热等多物理模型、设计模型、工程经验、标准规范中的知识图谱元模型和分布式表示学习机制,研究跨学科知识推理与演进方法、知识复用与迁移方法;探索跨域飞行器小样本数据与物理知识的联合驱动机制,研究融合保结构数值格式的流场深度代理模型建模方法,以及融合有限体积法、无网格法与内嵌物理知识神经网络的流体力学逆问题建模、求解与迁移学习方法。

7、连续多维变构智能飞行控制理论与方法

  探索适应跨域变构飞行的智能飞行控制理论与方法。研究刚、柔、液耦合的动力学特性与控制系统建模理论;提出复杂物理场环境的信息融合与长航时无缝自主导航方法;发展连续多维大变构下适应力学与控制弱模型、多物理场强耦合、任务与环境等强不确定条件的智能决策、自主控制与轨迹规划方法。

8、多物理场高效飞行信息感知与传输方法

  探索跨域高效飞行器极端环境下多物理场信息感知的新概念与新方法。揭示多物理场环境与敏感材料及结构的作用机理,研究飞行器表面环境超薄数字化自驱动传感系统;考虑不同空域过渡区测控通信可靠性问题,发展跨域变构飞行器多域异构测控网络资源感知、无缝接入技术与基于卫星互联网连续测控通信协同方法。

(二)重点支持项目

  围绕核心科学问题,以总体科学目标为牵引,拟资助一批前期研究成果积累较好、处于当前前沿热点、对总体科学目标有较大贡献的重点支持项目,研究方向如下(申报项目须覆盖以下单一方向中列出的全部内容):

1、跨域变构飞行器主动热防护柔性蒙皮状态自感知方法与高效热防护实现机制

  跨域变构飞行过程高温环境与飞行器大变形耦合约束下,研究具有防热、隔热功能的柔性防护蒙皮(服役时间不小于1200s、变形率不小于80%)高效主动热防护实现机制,研究蒙皮状态自感知(应变与温度状态参数感知误差不大于2%FS)方法,发展多状态参数自感知器件与主动热防护柔性蒙皮的共形与集成方法,研制具有状态参数自感知功能的主动热防护柔性蒙皮原理样机并通过地面考核实验。

2、跨域飞行器多维度智能变构型机构系统设计理论与关键技术

  探索跨域变构飞行器机翼轻质大承载(面载大于40kPa)、快响应(变形时间小于3s)、多维度(不少于三种变形能力)的智能变形机构组成原理与构型综合设计方法,开展符合机翼变形要求的智能变形机构优化设计,发展机构与柔性蒙皮协同变构设计理论、多构型状态感知与自适应驱动及控制方法,研究智能变形机构、柔性蒙皮结构与分布式驱动器多维变构型系统一体化设计理论与关键技术。

3、跨域变构非定常高精度高效空气动力学理论模型与计算方法

  研究适用于宽速域(0-25Ma)与大空域(0-100km)变构飞行器多尺度流场的广义流体动力学高阶矩理论,突破高阶矩方程非定常非结构动网格计算技术,探索跨域多尺度流动应力与速度梯度张量的非线性本构关系,揭示动边界非定常效应与跨域效应的耦合机制,完成动边界跨域非定常流动过程气动力热预测方法的风洞实验验证。

4、跨域飞行高效气动降热减阻方法及流动动态演化机理

  建立面向跨域变构高速(大于5Ma)飞行过程的飞行器大面积高效降热(壁面热流下降不小于80%)减阻(摩阻下降不小于30%)方法,突破高速非定常流场时空动态演化精细测试与气动力热原位表征技术,研究飞行器表面流动动态演化机理和流动主动调控实现机制,揭示高速飞行过程降热减阻的流动调控效能随空域、速域的演变规律。

5、多物理场耦合下变构飞行智能规划决策与控制

  建立多物理场耦合下大变构飞行的运动模型,刻画飞行器与环境相互作用下变构飞行运动特性及边界,揭示构型变化对剖面控制能力和跨域运动的影响机理。研究基于机理与数据混合驱动的飞行能力评估、构型决策、轨迹规划与制导控制理论,解决多元任务与多源干扰下在线自学习与自演进问题,实现多维连续变化条件下构型能力与任务轨迹的双闭环智能决策规划与制导控制。

6、跨域复杂电磁环境感知与自适应信息传输

  针对跨域飞行复杂环境(电子密度不小于1013cm-3量级)连续可靠通信需求,研究飞行器等离子体鞘套参数的实时高精度感知新方法;建立等离子鞘套参数实时感知和主动调控耦合模型,探索等离子流场主动调控技术;研究物理调控信道与信号空间之间的本构关系及通信机制,建立集电磁环境感知、主动调控和可靠通信协同一体的自适应信息感知与传输系统,实现飞行全程特别是可重复返回时连续可靠信息传输。

四、2022年度资助计划

  拟资助培育项目15~20项,资助直接费用约为80万元/项,资助期限为3年,培育项目申请书中研究期限应填写“2023年1月1日— 2025年12月31日”;拟资助重点支持项目5~7项,资助直接费用约为300万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“2023年1月1日—2026年12月31日”。

五、学校申报截止日期和材料报送

申请人按照项目指南要求填报申请书及附件材料。待学院审核通过后,请于2022年6月20日16时前在基金委系统提交,同时将科研审核系统的预算审核表和形式审查表的签字扫描版发至邮箱:zhaorui@hfut.edu.cn (邮件主题:多物理场高效飞行科学基础与调控机理重大研究计划项目申报+姓名)。纸质申报书、预算审核表和形式审查表各1份签章后于6月21日16时前交至科技服务大厅

六、其他事项

1、具体要求详见基金委通知:https://www.nsfc.gov.cn/publish/portal0/tab434/info85522.htm

2、后续工作安排如有调整将另行通知,请及时关注国家自然科学基金委和学校网站。

科研院科研基地建设办公室(自然科学项目)联系电话:62901951(吴老师)、62901115(赵老师)

科研院科研基地建设办公室

2022年5月19日


合肥工业大学科研院 版权所有
Copyright©2019 news.hfut.edu.cn All rights reserved.