个人信息Personal Information
副教授
教师拼音名称:yanjieru
所在单位:实验中心
学历:研究生(博士后)
学位:博士学位
在职信息:在职
毕业院校:德国斯图加特大学
其他联系方式Other Contact Information
邮箱 :
移动电话 :
通讯/办公地址 :
邮箱 :
个人简介Personal Profile
阎洁如,女,2018年12月博士毕业于德国斯图加特大学,获工学博士学位;2019年-2023年在同济大学从事博士后研究;2023年7月进入土木与水利工程学院,负责实验中心/水力学实验室的日常管理,并从事教学与科研工作。主要研究方向包括:极端降水的分析和预报,城市水文,高分辨率降水场的实时模拟,随机天气模型等;主持国家自然科学基金青年基金项目、省部级项目共2项,参与国家自然科学基金面上项目、德国研究基金会项目、产学研合作项目共6项;发表SCI论文9篇,英文专著1部。
主持/参与项目
[1] 国家自然科学基金青年基金项目:基于数值模拟和非线性融合技术对高分辨率降水场实时构建的研究,42001369,2021.01-2023.12,在研,主持
[2] 中国博士后科学基金面上项目:基于数值模拟和非线性融合技术对高分辨率雨量场实时构建的研究,2020M671219,2020.09-2022.08,结题,主持
[3] 国家重大水体专项独立课题:苏州市饮用水安全保障技术集成与综合应用示范,2017ZX07201001,3390.87万,2017.1-2020.12,结题,参与
[4] 国家自然科学基金面上项目:城市雨水系统光滑粒子动力学模拟理论研究,51778452, 80万,2018.01-2021.12,结题,参与
[5] 国家自然科学基金面上项目:城市排水管网运行状态微机电技术诊断理论与应用,51978493,61万,2020.1-2023.12,在研,参与
[6] 国家自然科学基金面上项目:基于深度强化学习的供水管网人机决策融合实时优化调度,52270093 ,54万,2023.1-2026.12,在研,参与
[7] 产学研合作课题:温州市鹿城区丰门街道排水管网运行状态诊断研究,48.5万,2020.06-2021.12,结题,参与(科研秘书)
[8] 德国研究基金会项目:Space-Time Dynamics of Extreme Floods (SPATE),12.8万欧元,2016.12-2018.12,结题,参与(技术骨干)
论文专著
[1] Yan, J.* and Bárdossy, A. (2019). Short time precipitation estimation using weather radar and surface observations: With rainfall displacement information integrated in a stochastic manner, Journal of Hydrology, 574, 672–682, 2019. (SCI,JCR Q1区, 中科院一区,IF = 6.708)
[2] Yan, J.*, Bárdossy, A., Hörning, S., and Tao, T. (2020). Conditional simulation of surface rainfall fields using modified phase annealing, Hydrology and Earth System Sciences (HESS), 24, 2287– 2301. (SCI,JCR Q1, 中科院一区,IF = 6.617)
[3] Yan, J., Li, F., Bárdossy, A., and Tao, T.* (2021) Conditional simulation of spatial rainfall fields using random mixing: a study that implements full control over the stochastic process, Hydrology and Earth System Sciences (HESS), 25, 3819–3835. (SCI,JCR Q1, 中科院一区,IF = 6.617)
[4] Yan, J. and Tao, T.* (2022). Unsupervised anomaly detection in hourly water demand data using an asymmetric encoder-decoder model, Journal of Hydrology, 613, 128389. (SCI,JCR Q1区, 中科院一区,IF = 6.708)
[5] Zhu W., Tao T.*, Yan H., Yan J.*, Wang J., Li S., and Xin K. An optimized LSTM-based approach applied to early warning and forecasting of ponding in the urban drainage system, Hydrology and Earth System Sciences (HESS). (SCI,JCR Q1, 中科院一区,IF = 6.617)
[6] Li F. , Yan, J., Yan H., Tao T., Duan H. (2023) 2D Modelling and energy analysis of entrapped air-pocket propagation and spring-like geysering in the drainage pipeline system, Engineering Applications of Computational Fluid Mechanics, 17:1. (SCI,JCR Q1, 中科院一区,IF = 6.1)
[7] Chen, L., Yan, H., Yan, J., Wang, J.*, Tao, T., Xin, K., Li, S., Pu, Z., & Qiu, J. (2022). Short-term water demand forecast based on automatic feature extraction by one-dimensional convolution, Journal of Hydrology, 606, 127440. (SCI,JCR Q1区, 中科院一区,IF = 6.708)
[8] Li, F.†, Yan, J.†, Xiong, X., Yan, H., *Tao, T. and Wang, L. (2023). GIS-based fuzzy comprehensive evaluation of urban flooding risk with socioeconomic-index system development., Environmental Science and Pollution Research (SCI,JCR Q2区,中科院三区,IF = 5.190)
[9] Pu, Z., Yan, J., Li, Z., Chen, L., Tian, W., Xin, K.*, Tao, T. (2023). A hybrid Wavelet-CNN-LSTM Deep Learning model for short-term Urban Water Demand Forecasting, Frontiers of Environmental Science & Engineering. (SCI,JCR Q2区, 中科院二区,IF = 6.048)
[10] Yan, Jieru (2018). Nonlinear estimation of short time precipitation using weather radar and surface observations. Universität Stuttgart, Stuttgart. ISBN:978-3-942036-68-9. URL: http:// elib.uni-stuttgart.de/handle/11682/10287. (学术专著)