Authors: Changqin Li, Yiping Cui, Jie Lu, Cunyu Liu, Sitan Chen, Changyang Ma, Zhenhua Liu, Jinmei Wang, Wenyi Kang
Journal: Molecules
March 2020, Volume 25, Issue 6, 1309.
https://doi.org/10.3390/molecules25061309
中文简介:/henu/mu_syj/info/1061/1083.htm
Ganoderma lucidum is widely used in traditional Chinese medicine (TCM). Ganoderic acid A and D are the main bioactive components with anticancer effects in G. lucidum. To obtain the maximum content of two compounds from G. lucidum, a novel extraction method, an ionic liquid-based ultrasonic-assisted method (ILUAE) was established. Ionic liquids (ILs) of different types and parameters, including the concentration of ILs, ultrasonic power, ultrasonic time, rotational speed, solid–liquid ratio, were optimized by the orthogonal experiment and variance analysis. Under these optimal conditions, the total extraction yield of the two compounds in G. lucidum was 3.31 mg/g, which is 36.21% higher than that of the traditional solvent extraction method. Subsequently, an artificial neural network (ANN) was developed to model the performance of the total extraction yield. The Levenberg-Marquardt back propagation algorithm with the sigmoid transfer function (logsig) at the hidden layer and a linear transfer function (purelin) at the output layer were used. Results showed that single hidden layer with 9 neurons presented the best values for the mean squared error (MSE) and the correlation coefficient (R), with respectively corresponding values of 0.09622 and 0.93332.