报告承办单位: 数学与统计学院
报告内容: Testing for Series Correlation and ARCH Effect of High-Dimensional Time Series Data
报告人姓名: 凌仕卿
报告人所在单位: 香港科技大学
报告人职称/职务及学术头衔: 教授,博导
报告时间: 2018年10月17日周三下午3:30
报告地点: 理科楼A419
报告人简介: 凌仕卿教授于1997年取得香港大学统计学博士学位,1997年至2000年西澳大学经济学系博士后,2000年至2006年香港科技大学数学系助理教授,2003年至2006年受聘于西澳大学经济学系和数学与统计系兼职副教授,2006年至2010年香港科技大学数学系副教授,2010年至今香港科技大学数学系教授。凌教授的主要研究方向为:大样本理论、经验过程、非平稳时间序列、非线性时间序列及计量经济学。现为《Journal of Time Series Analysis》联合编辑《Statistics & Probability Letters》、《Bernoulli》、《Electronic Journal of Statistics》、《Journal of the Japan Statistical Association》国际期刊的副主编。2003年和2013年分别荣获澳大利亚和新西兰MSS委员会颁发的Early Career Research Excellence Prize和Biennial Medal, 2005年当选为国际统计学会会员;2007年荣获计量经济学期刊(Econometric Theory)颁发的Multa Scripsit Award 的奖励,2013年当选为澳大利亚和新西兰MSS的Fellow。2015年当选为ITTI的Inaugural Distinguished Fellow。
报告摘要:This paper proposes two Portmanteau tests for detecting serial correlation and ARCH effect in high-dimensional data. The dimension of data $p=p(n)$ may go to infinity when the sample size $n\to\infty$. We first show that the sample autocorrelation function of the $L_{1}-$norm of data is asymptotically normal and a norm-based Portmanteau test statistic is asymptotically $\chi^{2}$-distributed. When the cross-sectional variables are $s$-dependent (i.e., at most $s$ elements are dependent), the test still works well in the case with $p>n$. Using a suitable function of the data, the norm-based test can be applied to the heavy-tailed time series. We next show that the sample rank autocorrelation function (Spearman's rank correlaion) of the $L_{1}-$norm of data is asymptotically normal and the norm-based rank test statistic is asymptotically $\chi^{2}$-distributed. Surprisingly, the norm-based rank test is dimension-free, i.e. independent of $p$, and without requiring any moment condition of the data or the covariance structure condition as required in the literature. Two standardized norm-based tests are further discussed. Simulation results show that these test statistics have satisfactory sizes and are very powerful even for small $n$ and large $p$. A real data example is given.