报告题目:Clique density vs blowups
报告人:刘鸿 首席科学家(韩国基础科学研究院IBS)
报告时间:2024年11月20日(周三)下午14:00-15:00
主持人:甘璐伊宁 特聘研究员
报告地点:北京邮电大学沙河校区 理学楼304
摘要:A well-known theorem of Nikiforov asserts that any graph with a positive -density contains a logarithmic blowup of . We explore variants of Nikiforov's result and investigate when positive clique density condition implies the existence of a significantly larger blowup of a clique. Our results study such problems for families of ordered graphs with forbidden induced monotone path, obtaining optimal bounds. As corollaries, we strengthen a result of Pach and Tomon, and resolve a conjecture of Tomon in a strong form. To find a large blowup, we reduce the embedding problem to a certain Ramsey problem. For optimal lower bound constructions, we make use of concentration of measure and the isodiametric inequality on high dimensional spheres.
报告人简介:
刘鸿,现任韩国基础科学研究院 (IBS) 首席科学家,同时为其极值及概率组合研究组 (ECOPRO) 带头人。2015年于伊利诺伊大学厄本那-香槟分校 (UIUC) 取得博士学位。研究领域包括极值、概率组合、图论、离散几何、组合数论等。在J. Amer. Math. Soc., Forum Math. Pi, J. Euro. Math. Soc., Amer. J. Math., Proc. London Math. Soc. 及J. Combin. Theory Ser. B, Combinatorica等杂志发表论文50余篇。并先后获得英国利弗休姆奖学金、欧盟的玛丽-居里奖学金,英国研究与创新(UKRI)联盟授予未来领袖学者的殊荣。