教授

个人信息简介

姓名:唐 宏

学历:研究生

职称:教授

电话:58800219

邮箱:tanghong@bnu.edu.cn

学术兼职

IEEE Senior Member

"Sustainability","地理与地理信息科学"编委

中国图象图形学会机器视觉专业委员会委员

中国环境科学学会环境信息系统与遥感专业委员会

研究方向与招生

研究方向:GeoAI、遥感大数据与深度学习、人居环境遥感、灾害遥感

招生专业:地图学与地理信息系统

教育经历

2003.03-2006.01  博士,上海交通大学,模式识别与智能系统

1998.09-2001.07  硕士,中国矿业大学,地图制图学与地理信息工程

1994.09-1998.07  学士,中国矿业大学,土地规划与利用

工作经历

2016.12-至今          北京师范大学地理科学学部,教授

2014.07-2016.12    北京师范大学减灾与应急管理研究院,教授

2008.05-2014.07   北京师范大学减灾与应急管理研究院,讲师、副教授

2006.03-2008.03   法国国立计算机与控制研究所(INRIA),博士后

承担课程

研究生基础课:遥感图像模式识别,课程网站:https://prors.readthedocs.io/ 

本科生通识课:图像模式识别,课程网站:http://ipr.readthedocs.io/ 

本科生选修课:机器学习与深度学习, 遥感模式识别

科研项目

1 国家自然科学基金面上项目:卷积神经网络的遥感图像时空元数据嵌入方法及应用研究,2020-2023,主持。

2  国家自然科学基金面上项目:基于层次Dirichlet过程的高分遥感图像分类方法及其应用研究,2016-2019,主持。

3 国家自然科学基金青年项目:基于概率潜语义分析模型的面向对象高分辨率遥感影像分析关键技术及其应用研究,2009-2012,主持。 

著作论文

唐宏,毛婷,舒阳,李少丹,李京,高分遥感图像空谱协同概率模型,北京,科学出版社,2022.7.

Lu Chen, Haoze Shi, Hong Tang, Xin Yang, Chao Ji, Zhigang Li, Yuhong Tu, Two-stage estimation of hourly diffuse solar radiation across China using end-to-end gradient boosting with sequentially boosted features, Remote Sensing of Environment, Volume 315, 15 December 2024, 114445. https://doi.org/10.1016/j.rse.2024.114445 

Yang Zhen, Xin Yang, Hong Tang, Haoze Shi, Zeping Liu, CALIPSO-based aerosol extinction profile estimation from MODIS and MERRA-2 data using a hybrid model of Transformer and CNN, Science of The Total Environment, Volume 954, 1 December 2024, 176423. https://doi.org/10.1016/j.scitotenv.2024.176423

Siqing Lyu, Chao Ji, Zeping Liu, Hong Tang, Liqiang Zhang, Xin Yang, Four seasonal composite Sentinel-2 images for the large-scale estimation of the number of stories in each individual building, Remote Sensing of Environment, Volume 303, 2024,114017, https://doi.org/10.1016/j.rse.2024.114017 .

Liu, Z., Tang, H., Feng, L., and Lyu, S.: China Building Rooftop Area: the first multi-annual (2016–2021) and high-resolution (2.5 m) building rooftop area dataset in China derived with super-resolution segmentation from Sentinel-2 imagery, Earth System Science Data.Volume 15, issue 8, 15, 3547–3572, 2023, https://doi.org/10.5194/essd-15-3547-2023 .

Jiayi Ge, Hong Tang, Naisen Yang, Yijiang Hu, Rapid identification of damaged buildings using incremental learning with transferred data from historical natural disaster cases, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 195, 2023, Pages 105-128, https://doi.org/10.1016/j.isprsjprs.2022.11.010.

Naisen Yang, Haoze Shi, Hong Tang, Xin Yang, Geographical and temporal encoding for improving the estimation of PM2.5 concentrations in China using end-to-end gradient boosting, Remote Sensing of Environment, Volume 269, 2022, 112828, https://doi.org/10.1016/j.rse.2021.112828.

Zeping Liu, Hong Tang and Wei Huang, "Building Outline Delineation From VHR Remote Sensing Images Using the Convolutional Recurrent Neural Network Embedded With Line Segment Information," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-13, 2022, Art no. 4705713, doi: 10.1109/TGRS.2022.3154046.

Wei Huang, Hong Tang and Penglei Xu, "OEC-RNN: Object-Oriented Delineation of Rooftops With Edges and Corners Using the Recurrent Neural Network From the Aerial Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-12, 2022, Art no. 5604912, doi: 10.1109/TGRS.2021.3076098.

Naisen Yang, Hog Tang, GeoBoost: An Incremental Deep Learning Approach toward GlobalMapping of Buildings from VHR Remote Sensing Images, Remote Sensing, 2020, 12,1794; https://doi.org/10.3390/rs12111794.

JinChen, Hong Tang and Wenkai Chen, Deep learning of the aftershock hysteresiseffect based on the elastic dislocation theory, Natural Hazards and Earth System Sciences, 20, 3117–3134, 2020 https://doi.org/10.5194/nhess-20-3117-2020.

Ting Mao, Hong Tang, et al., UnsupervisedClassification of Multispectral Images Embedded With a Segmentation of Panchromatic Images Using Localized Clusters, IEEE Transactions on Geoscienceand Remote Sensing, 57(11): 8732-8744, 2019. DOI:10.1109/TGRS.2019.2922672

  Ting Mao, Hong Tang et al., A GeneralizedMetaphor of Chinese Restaurant Franchise to Fusing Both Panchromatic and Multispectral Images for Unsupervised Classification, IEEE Transactions on Geoscience and Remote Sensing, 54(8):1-11 · April 2016. DOI:10.1109/TGRS.2016.2545927

  Yang Shu, Hong Tang et al., Object-Based Unsupervised Classification of VHR Panchromatic Satellite Images by Combiningthe HDP and IBP on Multiple Scenes, IEEE Transactions on Geoscience and RemoteSensing, 53(11):6148-6162 · November 2015. DOI:10.1109/TGRS.2015.2432856

  Hong Tang, et al., A MultiscaleLatentDirichlet Allocation Model for Object-Oriented Clustering of VHR Panchromatic Satellite Images, IEEE Transactions on Geoscience and Remote Sensing 51(3):1680-1692 · March 2013. DOI:10.1109/TGRS.2012.2205579

  Naisen Yang, Hong Tang, et al., DropBand:A Simple and Effective Method for Promoting the SceneClassification Accuracy ofConvolutional Neural Networks for VHR Remote SensingImagery, IEEE Geosciencesand Remote Sensing Letters, VOL. 15, NO. 2, FEBRUARY2018. DOI:10.1109/LGRS.2017.2785261

  Shaodan Li, Hong Tang, et. al.,Unsupervised Detection of Earthquake-Triggered Roof-Holes From UAV Images UsingJoint Colorand Shape Features, IEEE Geoscience and Remote Sensing Letters, 12(9):1-5 · September 2015. DOI:10.1109/LGRS.2015.2429894

  Li Shen, Hong Tang et al., ASemisupervised Latent Dirichlet Allocation Model for Object-BasedClassification of VHR Panchromatic Satellite Images, IEEE Geoscience and Remote Sensing Letters, 11(4):863-867 · April 2014. DOI:10.1109/LGRS.2013.2280298. DOI:10.1109/LGRS.2013.2280298

  Wenbin Yi, Hong Tang et al., AnObject-Oriented Semantic Clustering Algorithm for High-Resolution RemoteSensing Images Using the Aspect Model, IEEE Geoscience and Remote Sensing Letters, 8(5):522-526 · May 2011. DOI:10.1109/LGRS.2010.2090034

  Niu, Xiaonan, Hong Tang, and Lixin Wu."Satellite scheduling of large areal tasks for rapid response to naturaldisaster using a multi-objective genetic algorithm." International Journalof Disaster Risk Reduction, 28 (2018): 813-825.

  Hong Tang, Nozha Boujemaa et al., Modelingloosely annotated images using both given and imagined annotations, Optical Engineering Dec 2011.

  Hong Tang, Henri Maitre, Nozha Boujemaa,On the relevance of linear discriminative features, Information Sciences, 180(18):3422-3433 · September 2010.

  Hong Tang et al., Intra-dimensionalfeaturediagnosticity in the Fuzzy Feature Contrast Model, Image and Vision Computing, 26(6):751-760 · June 2008.

  Hong Tang et al., Nonlinear discriminantmapping using the Laplacian of a graph, Pattern Recognition, 1(1) · January2006.

重要奖项

2011年入选教育部新世纪人才;

2017年获北京师范大学第六届多媒体教学设计(网络课程组)比赛二等奖

2019年获地理信息科技进步特等奖“重大自然灾害评估模型与方法体现研究与应用”

2020年获北京市科技进步二等奖“遥感大数据高质量智能快速处理与分析的技术及应用”

2024年获自然资源科技进步一等奖“遥感图像地理智能计算的关键技术与应用”