Associate Editor:《Global Environmental Change Advances》,《Journal of Plant Ecology》
Editorial Board Member:《Environmental Research Communications》和《遥感技术与应用》;《Remote Sensing》(2018.5-2024.3)
青年编委:《Geography and Sustainability》
Section Associate Editor:《CABI Agriculture and Bioscience》
Advisory Editorial Board Member:《Global Change Biology》(2017.5-2023.4)
研究方向:全球变化生态学和生态遥感。1,综合利用遥感技术,模型和地面观测资料研究自然/城市生态系统关键要素和过程对气候变化和人类活动的响应和反馈。2,生态系统关键参数及其变化的遥感探测。
New! 目前招聘博士后1-2位,需有一定编程和定量分析能力及相关专业背景(不需要出野外)。待遇从优,详见 https://mp.weixin.qq.com/s/UNw6S1sWgf-6T7oqzrRxRQ
招生专业:地图学与地理信息系统。招收有遥感科学,自然地理学,生态学,物理学或大气科学背景的硕、博士研究生。需有一定的编程能力、英语阅读能力、汉语写作能力以及基本的数学和统计学素养,其中,英语水平参考北师大和地理学部招收保送生的要求,编程能力要求掌握一门编程语言,能写一些基本的代码。2025级拟招收硕、博士研究生各1位,欢迎提前联系、咨询。
已培养博士后3位,博士2位,协助培养博士后1位,均入职国家级科研院所或211及以上高校(在编科研/教学岗位)。
2009年,北京师范大学,资源学院,自然地理学专业,理学博士
2004年,北京师范大学,物理学系,物理学专业,理学学士
2020- 至今, 北京师范大学地理科学学部,陆地表层系统科学与可持续发展研究院,教授
2012-2020年,中国科学院青藏高原研究所,副研究员、研究员(2017)
2009-2012年,日本国立环境研究所,博士后
本科生课程《遥感概论》(参与),《文献阅读与论文写作》(共同承担)
研究生课程《植被物候遥感》(独立承担),《论文写作》(参与),《全球变化生态学》(参与)
国家重点研发计划课题,“气候变化和人类活动对生态状况影响的阈值识别技术”,2024-2027,330万元,主持。(此项目正招聘博士后1-2位,详见:https://mp.weixin.qq.com/s/UNw6S1sWgf-6T7oqzrRxRQ)
国家自然科学基金面上项目,“高寒草地海拔分布上限遥感识别与时空变化探索 — 以青藏高原为例”,2025-2028,48 万元(直接经费),主持。
国家重点研发项目子课题“中国多年冻土区植被碳氮磷时空格局变化及机制”,2023-2027,80万元,主持。
北京师范大学引进人才项目,2021-2026,主持。
中组部万人计划青年拔尖人才项目(第三批),180万元,2018-2020,主持。
中国科学院前沿科学重点研究项目,250万元,2016-2020,主持。
国家自然科学基金面上项目,“青藏高原高寒草地植被生长期对气候变化响应的模拟研究”,80万元(直接经费),2016-2019,主持。
Chiba University Center for Environmental Remote Sensing, CEReS Overseas Joint Research Program 2016, Multi-platform satellite observations for improving retrieval of plant phenology on the Tibetan Plateau,CI16-101, 200,000 Japanese Yen, 2016-2017,主持。
中国科学院青年创新促进会项目,60万元,2015-2018,主持。
国家自然科学基金青年科学基金,“基于控制试验的冰雪区植被物候遥感探测方法研究”,25万元,2013-2015,主持。
国家重点研发计划项目,“全球变化驱动下陆表自然和人文要素相互作用及区域表现”,2017-2022,参与(子课题负责人)。
国家自然科学基金国际(地区)合作与交流项目,“生态系统多重压力的缓解策略”,200万元,2019-2021,参与。
以第一或通讯作者在Nature Reviews Earth & Environment,PNAS,National Science Review和Global Change Biology等SCI期刊发表论文40 多篇,篇均SCI引用90多次,ESI 前 1% 高被引论文 5 篇。完整目录和引用:https://scholar.google.com/citations?hl=en&user=z3VArYMAAAAJ ;https://www.researchgate.net/profile/Miaogen-Shen
第一或通讯作者论文(带下划线一作为本人指导或协助指导的学生或博士后):
Jiang, N., *Shen, M. & Yang, Z. (2024) Differential phenological responses to temperature among different stages of spring vegetation green-up. Journal of Plant Ecology, doi: 10.1093/jpe/rtae063. 封面论文
Shen, M., Zhao, W., Jiang, N., Liu, L., Cao, R., Yang, W., Zhu, X., Wang, C., Chen, X., *Chen, J. & Zhang, X. (2024) Challenges in remote sensing of vegetation phenology. The Innovation Geoscience, 100070.
Zheng, L., Cao, X., Yang, Z., Wang, H., Zang, Q., *Song, W., *Shen, M. & *Xiao, C. (2024) Effects of warming conditions on plant Nitrogen-Phosphorus stoichiometry and resorption of three plant species in alpine meadow ecosystems on the Tibetan Plateau. Journal of Plant Ecology. doi: 10.1093/jpe/rtae032.
Lv, J., Yang, W., *Shen, M., Liang, E., Jiang, Y., Chen, J., Chen, X., Jiang, N., Liu, L., Zhao, W., Peñuelas, J. (2024) Winter greening on the Tibetan Plateau induced by climate warming over 2000-2021. Forest Ecology and Management 558, 121796, https://doi.org/10.1016/j.foreco.2024.121796. 本世纪以来,气候变暖导致了青藏高原实际和部分潜在的常绿植被分布区冬季变绿,表明常绿木本植物覆盖度增加(有木本植物扩张)。
Yang Zhiyong, Jiang Nan, Huang Yan, *Shen Miaogen, Zhu Wenquan, Fu Yongshuo, Tang Yanhong, Janssens Ivan. (2024) Growing-season climate as an explanation of spatial variations in temperature sensitivity of green-up on Tibetan Plateau. Ecosphere, https://doi.org/10.1002/ecs2.4761. 生长季水热条件越好的站点,其植物返青对温度的敏感性越小。
Liu, L., Chen, J., *Shen, M., Chen, X., Cao, R., Cao, X., Cui, X., Yang, W., Zhu, X., Li, L., Tang, Y. (2023) A remote sensing method for mapping alpine grasslines based on graph-cut. Global Change Biology, https://doi.org/10.1111/gcb.17005. 设计了一个图割算法,从Landsat影像提取高寒草地分布的海拔上限。中文介绍 /bnu/smu_geo/xwzx/795bfad6822f406ba67d37e6922f2978.html;http://www.chen-lab.club/?p=20624
Zhang, L., *Shen, M., *Yang, Z., Wang, Y. and Chen, J., (2023). Spatial variations in the difference in elevational shifts between greenness and temperature isolines across the Tibetan Plateau grasslands under warming. Science of The Total Environment, 906: 167715.青藏高原等绿度线和等温线沿海拔移动速度之差呈现显著的空间变化,反应了植被对温度响应和对局地环境适应的多样性和复杂性。
#Chen, Z., #Shen, M., Jiang, N., Chen, J., Tang, Y. & Gu, S. (2023) Daytime warming strengthened delaying effect of precipitation on end of the vegetation growing season on the Tibetan Plateau. Science of The Total Environment, https://doi.org/10.1016/j.scitotenv.2023.164382. 不同于以前研究中白天变暖提前青藏高原枯黄,本研究发现白天变暖增强了降水对枯黄的推迟作用。
Zhang, L., *Shen, M., Jiang, N., Lv, J., Liu, L. & Zhang, L. (2023) Spatial variations in the response of spring onset of photosynthesis of evergreen vegetation to climate factors across the Tibetan Plateau: The roles of interactions between temperature, precipitation, and solar radiation. Agricultural and Forest Meteorology, 335, https://doi.org/10.1016/j.agrformet.2023.109440. 温度、水分和辐射的交互作用调控了青藏高原常绿植被春季光合开始期对气候因子的响应,解释了这种响应的空间变化。
Jiang, N., *Shen, M., Chen, J., Yang, W., Zhu, X., Wang, X. & Peñuelas, J. (2023) Continuous advance in the onset of vegetation green-up in the Northern Hemisphere, during hiatuses in spring warming. npj Climate and Atmospheric Science, 6. https://doi.org/10.1038/s41612-023-00343-0 全球变暖停滞期间,北半球返青仍持续提前。
Jiang, N., *Shen, Miaogen., Ciais, P., Campioli, M., Peñuelas, J., Körner, C., Cao, R., Piao, S., Liu, L., Wang, S., Liang, E., Delpierre, N., Soudani, K., Rao, Y., Montagnani, L., Hörtnagl, L., Paul-Limoges, E., Myneni, R., Wohlfahrt, G., Fu, Y., Šigut, L., Varlagin, A., Chen, J., Tang, Y. and Zhao, W. (2022) Warming does not delay the start of autumnal leaf coloration but slows its progress rate. Global Ecology and Biogeography, https://doi.org/10.1111/geb.13581. 提供光周期触发秋季叶衰老的观测证据,发现了光周期对叶变色开始期的调控;气候变暖会减缓衰老速度,延长衰老的持续时间。
*Miaogen Shen, *Shiping Wang, Nan Jiang, Jianping Sun, Ruyin Cao, Xiaofang Ling, Bo Fang, Lei Zhang, Lihao Zhang, Xiyan Xu, Wangwang Lv, Baolin Li, Qingling Sun, Fandong Meng, Yuhan Jiang, Tsechoe Dorji, Yongshuo Fu, Amy Iler, Yann Vitasse, Heidi Steltzer, Zhenming Ji, Wenwu Zhao, Shilong Piao, and *Bojie Fu (2022) Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, https://doi.org/10.1038/s43017-022-00317-5. 青藏高原草地的主要春季物候事件和秋季叶变色时间的温度敏感性均高于北极地区草地;生长季开始期和结束期对温度的敏感性低于中纬度高山和亚高山地区草地。中文介绍:/bnu/smu_geo/xwzx/132615.html
Shen, M., Zhu,X., Peng, D., Jiang, N., Huang, Y., Chen, J., Wang, C. & Zhao, W. (2022) Greater temperature sensitivity of vegetation greenup onset date in areas with weaker temperature seasonality across the Northern Hemisphere. Agricultural and Forest Meteorology, 313, 108759. 在北半球,季节性强的地方,生长季开始期对温度敏感性小。
Fang, B., Yang,Z., *Shen, M., Wu, X., & *Hu, J. (2021). Limited increase in asynchrony between the onset of spring green-up and the arrival of a long-distance migratory bird. Science of The Total Environment, 148823. https://doi.org/10.1016/j.scitotenv.2021.14882332. 家燕从南半球到达中国繁殖地的时间需要和当地植被春季物候匹配,气候变化对此影响有限。中文介绍:https://www.cas.cn/syky/202109/t20210930_4807728.shtml
Li, Q., *Shen,M., Chen, X., Wang, C., Chen, J., Cao, X., & Cui, X. (2021). Optimal Color Composition Method for Generating High-Quality Daily Photographic Time Series from PhenoCam. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, doi: 10.1109/jstars.2021.3087814. 消除光照变化和不良观测条件影响,构建高质量物候相机影像时间序列。
Yang, Z., Du,Y., *Shen, M., Jiang, N., Liang, E., Zhu, W., . .. Zhao, W. (2021).Phylogenetic conservatism in heat requirement of leaf-out phenology, rather than temperature sensitivity, in Tibetan Plateau. Agricultural and Forest Meteorology,304–305 (2021) 108413. 青藏高原极端的气候环境压力和种系特化的温度需求共同作用下,植物返青始期及其温度敏感性不保守。
Zhang, L.,*Shen, M., *Shi, C., Shi, F., Jiang, N., Yang, Z.,& Ji, Z. (2021). Local Climatic Factors Mediated Impacts of Large-Scale Climate Oscillations on the Growth of Vegetation Across the Tibetan Plateau. Frontiers in Environmental Science, 9(5).doi: 10.3389/fenvs.2021.597971. 植被对气候因子的响应决定了大尺度气候涛动对青藏高原植被生长影响的空间格局。
*Shen, M.,Jiang, N., Peng, D., Rao, Y., Huang, Y., Fu, Y. H.,. . . *Tang, Y. (2020). Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agricultural and Forest Meteorology, 291, 108077. doi: 10.1016/j.agrformet.2020.108077. 在北半球超过1/3的区域,植被生长季开始时间可能受到上一年枯黄时间的影响。
Huang, Y., Jiang, N., *Shen, M., & *Guo, L. (2020). Effect of preseason diurnal temperature range on the start of vegetation growing season in the Northern Hemisphere. Ecological Indicators, 112, 106161. 在北半球约1/4的区域,温度日较差的变化可能影响植被生长季开始时间。
An, S., Zhu,X., *Shen, M., *Wang, Y., Cao, R., Chen, X., . . .Tang, Y. (2018). Mismatch in elevational shifts between satellite observed vegetation greenness and temperature isolines during 2000-2016 on the Tibetan Plateau. Global Change Biology, 24(11), 5411-5425. doi: 10.1111/gcb.14432. 青藏高原等绿度线和等温线沿海拔移动速度不一致。
*Cao, R.,*Shen, M., Zhou, J., & Chen, J. (2018). Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation. Agricultural and Forest Meteorology, 249, 176–186. doi:10.1016/j.agrformet.2017.11.032. 考虑不同时间尺度最高/最低气温和降水影响,有效提高了青藏高原植被生长季开始时间的模拟精度。
Yang, Z.,*Shen, M., Jia, S., Guo, L., Yang, W., Wang, C., . . .Chen, J. (2017).Asymmetric responses of the end of growing season to daily maximum and minimum temperatures on the Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 122 (24 ),13278-13287. doi: 10.1002/2017JD027318. 1982-2011年,青藏高原植被枯黄对日夜升温的响应相反,因而未显著推迟。
Cong, N.,*Shen, M., Yang, W., Yang, Z., Zhang, G., & Piao,S. (2017). Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. International Journal of Biometeorology, 61 (8),1433-1444.doi: 10.1007/s00484-017-1321-5. 青藏高原草地植被生长对温度的响应受降水调节,对降水的响应受温度调节,气候变暖促进了降水对植被生长的正面作用。
Cong, N.,*Shen, M., Piao, S., Chen, X., An, S., Yang, W., . . .Wang, T. (2017). Little change in heat requirement for vegetation green-up on the Tibetan Plateau over the warming period of 1998-2012. Agricultural and Forest Meteorology, 232(15),650-658. 1998-2012年,快速升温未降低返青热需求。
Cong, N.,*Shen, M., & Piao, S. (2017). Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. Journal of Plant Ecology-UK, 10(5),744–752. 生长季较短的地方,枯黄受返青影响较大,受温度影响较小。封面论文
*Shen, M.,*Piao, S., Chen, X., An, S., Fu, Y. H., Wang, S., . .. Janssens, I. (2016).Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Global Change Biology, 22(9),3057-3066. 青藏高原植被返青和生长对白天升温响应较弱,主要受夜间温度影响。
*Chen, J., Rao,Y. H., *Shen, M., Wang, C., Zhou, Y., Ma, L., .. . Yang, X. (2016). A Simple Method for Detecting Phenological Change From Time Series of Vegetation Index. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 54(6), 3436-3449. 提出了一种不需要拟合即可估算物候变化的算法,该算法同时可以有效融合地面观测,误差最小为3天。
*Shen, M.,Piao, S., Dorji, T., Liu, Q., Cong, N., Chen, X., . .. Zhang, G. (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2(4), 454-467. doi:10.1093/nsr/nwv058. 梳理了2010-2015年间青藏高原植物/植被物候研究进展,对未来研究提出了建议。
*Shen, M.,*Piao, S., Jeong, S. J., Zhou, L., Zeng, Z., Ciais,P., . . . Yao, T. (2015).Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences USA, 112(30), 9299-9304.doi:10.1073/pnas.1504418112. 在青藏高原,植被覆盖增加导致蒸腾作用增强,可降低日间温度,缓解温度上升趋势,形成植被对气候变化的负反馈。被引435次(2024/2/2)
*Shen, M.,Piao, S., Cong, N., Zhang, G., & Jassens, I. A.(2015). Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biology, 21(10),3647-3656. doi: 10.1111/gcb.12961. 分析了温度和降水交互作用对返青的影响。被引406次(2024/2/2)
Shen, M., Cong,N., & *Cao, R. (2015). Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982-2008. International Journal of Climatology, 35(12),3707-3712.doi: 10.1002/joc.4227. 1982-2008年,北半球生长季开始期变化趋势的纬度格局由春季物候对温度的敏感性解释,而非升温幅度。
*Han, L.,Tsunekawa, A., Tsubo, M., He, C., & *Shen, M.(2014). Spatial variations insnow cover and seasonally frozen ground over northern China and Mongolia,1988−2010. Global and Planetary Change, 116, 139-148. doi:10.1016/j.gloplacha.2014.02.008. 融雪期和冻土融化期间隔呈现复杂的时空变化。
Shen, M.,Zhang, G., Cong, N., Wang, S., Kong, W., & Piao,S. (2014). Increasing altitudinal gradient of spring vegetation phenology during the last decade onthe Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology, 189–190,71-80. doi: 10.1016/j.agrformet.2014.01.003. 2000年代青藏高原返青的海拔推迟率增大,与传统物候理论和温度变化的预测相反。被引367次(2024/2/2)
*Shen, M.,Tang, Y., Chen, J., Yang, X., Wang, C., Cui, X., . .. Cong, N. (2014).Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere. PLOS ONE, 9(2), e88178.doi:10.1371/journal.pone.0088178. 返青较早的区域/植被类型的返青对温度较为敏感。
*Shen, M.,Tang, Y., Desai, A. R., Gough, C., & Chen, J.(2014). Can EVI-derived land surface phenology be used as a surrogate for phenology of canopy photosynthesis? International Journal of Remote Sensing, 35(3),1162-1174. 量化了不同植被类型的结构物候和功能物候之间的差异。
*Shen, M., Sun,Z., Wang, S., Zhang, G., Kong, W., Chen, A.,& Piao, S. (2013). No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proceedings of the National Academy of Sciences USA, 110(26),E2329. 青藏高原2000年代返青未显著提前。
*Shen, M.,Tang, Y., Chen, J., & Yang, W. (2012).Specification of thermal growing season in temperate China from 1960 to 2009. Climatic Change, 114,783–798. 从遥感数据反演物候,确定了中国温带不同区域热生长季开始和结束期的温度阈值,不同于以往研究对不同区域使用统一阈值。
Shen, M., Tang,Y., Chen, J., Zhu, X., & Zheng, Y. (2011).Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and ForestMeteorology, 151(12),1711-1722. 首次分析了降水对高原植被返青的影响,为全球干旱和半干旱的中高纬度春季物候研究提供新的视角。被引372次(2024/2/2)
*Shen, M.(2011). Spring phenology was not consistently related to winter warming on theTibetan Plateau. Proceedings of the National Academy of Sciences USA, 108(19),E91-E92. 1990年代中后期到2000年代中期返青推迟由春季变冷导致,而非冬季变暖。
Shen, M., Chen,J., Zhu, X., Tang, Y., & Chen, X. (2010). Do flowers affect biomass estimate accuracy from NDVI and EVI? International Journal of Remote Sensing, 31(8),2139-2149. 不同“模拟像元”之间花覆盖度的差异破坏了NDVI/EVI与地上绿色生物量之间的正相关关系。
Shen, M., Chen,J., Zhu, X., & Tang, Y. (2009). Yellow flowers can decrease NDVI and EVI values: evidence from a field experiment in an alpine meadow. Canadian Journal of Remote Sensing, 35(2), 99-106. 自然界实际存在的黄花可降低NDVI和EVI。
Chen, J.,*Shen, M., Zhu, X., & Tang, Y. (2009). Indicator of flower status derived from in situ hyperspectral measurement in an alpine meadow on the Tibetan Plateau. Ecological Indicators, 9(4), 818-823. 提出了估算花覆盖估算的高光谱指数。
Chen, J.,*Shen, M., & Kato, T. (2009). Diurnal and seasonal variations in light-use efficiency in an alpine meadow ecosystem: causes and implications for remote sensing. Journal of Plant Ecology, 2(4), 173-185. 综合考虑散射辐射和直射辐射对光能利用率的不同影响,提出了GPP和APAR之间的线性模型。
Shen, M.,Tang,Y., Klein, J., Zhang, P., Gu, S., Shimono, A., & Chen, J. (2008).Estimation of above ground biomass using in situ hyperspectral measurements in five major grassland ecosystems on the Tibetan Plateau. Journal of Plant Ecology, 1(4), 247-257. 利用虚拟变量解释不同植被类型间光谱特征--生物量之间关系的差异,构建了利用光谱特征估算生物量的统一模型。
其它合作论文:
Niu, Q., Jin, G., Yin, S., Gan, L., Yang, Z., Dorji, T. & Shen, M. (2024) Transcriptional Changes Underlying the Degradation of Plant Community in Alpine Meadow Under Seasonal Warming Impact. Plant, Cell & Environment, https://doi.org/10.1111/pce.15160
Tang, R., He, B., Shen, M., Zhong, Z., Xu, H., Li, T., Guo, L., Huang, L. & Huang, X. (2024) How does canopy height regulate autumn photosynthetic phenology in the Northern Hemisphere? The Innovation Geoscience, 100095.
Cao, R., Li, L., Liu, L., Liang, H., Zhu, X., Shen, M., Zhou, J., Li, Y. & Chen, J. (2024) A spatiotemporal shape model fitting method for within-season crop phenology detection. ISPRS Journal of Photogrammetry and Remote Sensing, 217, 179-198.
An, S., Chen, X., Li, F., Wang, X., Shen, M., Luo, X., Ren, S., Zhao, H., Li, Y. & Xu, L. (2024) Long-term species-level observations indicate the critical role of soil moisture in regulating China's grassland productivity relative to phenological and climatic factors. Science of The Total Environment, 172553.
Yu, L., Du, Z., Li, X., Zhao, Q., Wu, H., weise, D., Yuan, X., Yang, Y., Cai, W., Song, W., Wang, P., Zhao, Z., Long, Y., Zhang, Y., Peng, J., Xin, X., Xu, F., Shen, M., Wang, H., Jiao, Y., Li, T., Sun, Z., Zhao, Y., Fang, M., Peng, D., Wu, C., Li, S., Shen, X., Ma, K., Lin, G. & Luo, Y. (2024) Near surface camera informed agricultural land monitoring for climate smart agriculture. Climate Smart Agriculture, 100008.
Tian, J., Zhu, X., Shen, M., Chen, J., Cao, R.,Qiu, Y., & Xu, Y.N. (2024). Effectiveness of spatiotemporal data fusion infine-scale land surface phenology monitoring: A simulation study. Journal ofRemote Sensing, doi:10.34133/remotesensing.0118
王开存,王灿,李龙辉,汪涛,吴国灿,付永硕,马倩,张井勇,蔡闻佳,曹静,喻朝庆,朱华晟,南卓铜,陈旻,张晶,纪多颖,沈妙根,唐文君,何斌,占文凤. 陆表自然和人文要素相互作用——“全球变化及应对”重点专项研究进展. 大气科学学报. 2024, 47(01): 1-22.
Shen, X., Shen, M., Wu, C., Peñuelas, J., Ciais,P., Zhang, J., Freeman, C., Palmer, P.I., Liu, B., Henderson, M., Song, Z.,Sun, S., Lu, X., & Jiang, M. (2024). Critical role of water conditions inthe responses of autumn phenology of marsh wetlands to climate change on theTibetan Plateau. Global Change Biology, 30, e17097
Zang, Y., Qiu, Y., Chen, X., Chen, J., Yang, W., Liu, Y.,Peng, L., Shen, M., & Cao, X. (2023). Mapping rapeseed in Chinaduring 2017-2021 using Sentinel data: an automated approach integratingrule-based sample generation and a one-class classifier (RSG-OC). GIScience& Remote Sensing, 60, 2163576
Tao, C., Guo, T., Shen, M., & Tang, Y. (2023).Spatio-Temporal Dynamic of Disturbances in Planted and Natural Forests for theSaihanba Region of China. Remote Sensing, 15, 4776
Pan, Y., Peng, D., Chen, J.M., Myneni, R., Zhang, X.,Huete, A., Fu, Y., Zheng, S., Yan, K., Yu, L., Zhu, P., Shen, M., Ju,W., Zhu, W., Xie, Q., Huang, W., Chen, Z., Huang, J., & Wu, C. (2023).Climate-driven land surface phenology advance is overestimated due to ignoringland cover changes. Environmental Research Letters, 18, 044045
Gao, C., Shi, C., Lou, Y., An, R., Sun, C., Wu, G.,Zhang, Y., Shen, M., & Chen, D. (2023). Estimating Summer ArcticWarming Amplitude Relative to Pre-Industrial Levels Using Tree Rings. Forests,14, 418
Cao, R., Ling, X., Liu, L., Wang, W., Li, L., & Shen,M. (2023). Remotely-sensed vegetation green-up onset date on the TibetanPlateau: simulations and future predictions. IEEE Journal of Selected Topics inApplied Earth Observations and Remote Sensing, 1-11
Wang, Y., Lv, W., Xue, K., Wang, S., Zhang, L., Hu, R.,Zeng, H., Xu, X., Li, Y., Jiang, L., Hao, Y., Du, J., Sun, J., Dorji, T., Piao,S., Wang, C., Luo, C., Zhang, Z., Chang, X., Zhang, M., Hu, Y., Wu, T., Wang,J., Li, B., Liu, P., Zhou, Y., Wang, A., Dong, S., Zhang, X., Gao, Q., Zhou,H., Shen, M., Wilkes, A., Miehe, G., Zhao, X., & Niu, H. (2022).Grassland changes and adaptive management on the Qinghai–Tibetan Plateau. NatureReviews Earth & Environment
Wang, S., Chen, J., Shen, M., Shi, T., Liu, L.,Zhang, L., Dong, Q., & Wang, C. (2022). Characterizing SpatiotemporalPatterns of Winter Wheat Phenology from 1981 to 2016 in North China byImproving Phenology Estimation. Remote Sensing, 14, 4930
Pan, Y., Wang, Y., Zheng, S., Huete, A.R., Shen, M.,Zhang, X., Huang, J., He, G., Yu, L., Xu, X., Xie, Q., & Peng, D. (2022).Characteristics of Greening along Altitudinal Gradients on theQinghai–Tibet Plateau Based on Time-Series Landsat Images. RemoteSensing, 14, 2408
Liu, L., Cao, R., Chen, J., Shen, M., Wang, S.,Zhou, J., & He, B. (2022). Detecting crop phenology from vegetation indextime-series data by improved shape model fitting in each phenological stage. RemoteSensing of Environment, 277, 113060
Li, S., Wang, Y., Ciais, P., Sitch, S., Sato, H., Shen,M., Chen, X., Ito, A., Wu, C., Kucharik, C.J., & Yuan, W. (2022).Deficiencies of phenology models in simulating spatial and temporal variationsin temperate spring leaf phenology. Journal of Geophysical Research: Biogeosciences,n/a, e2021JG006421
Gao, S., Liang, E., Liu, R., Babst, F., Camarero, J.J.,Fu, Y.H., Piao, S., Rossi, S., Shen, M., Wang, T., & Peñuelas, J.(2022). An earlier start of the thermal growing season enhances tree growth incold humid areas but not in dry areas. Nature Ecology & Evolution
Dong, Q., Chen, X., Chen, J., Yin, D., Zhang, C., Xu, F.,Rao, Y., Shen, M., Chen, Y., & Stein, A. (2022). Bias of areacounted from sub-pixel map: Origin and correction. Science of Remote Sensing, 6,100069
Chen, F., Yuan, Y., Trouet, V., Büntgen, U., Esper, J.,Chen, F., Yu, S., Shen, M., Zhang, R., Shang, H., Chen, Y., & Zhang,H. (2022). Ecological and societal effects of Central Asian streamflowvariation over the past eight centuries. npj Climate and Atmospheric Science, 5,27
Cao, R., Xu, Z., Chen, Y., Chen, J., & Shen, M.(2022). Reconstructing High-Spatiotemporal-Resolution (30 m and 8-Days) NDVITime-Series Data for the Qinghai–Tibetan Plateau from 2000 to 2020. RemoteSensing, 14, 3648
Cao, R., Shen, M., & Fu, B. (2022). AnOverview of Ecosystem Changes in Tibetan and Other Alpine Regions from EarthObservation. Remote Sensing, 14, 4839
An, S., Chen, X., Shen, M., Zhang, X., Lang, W.,& Liu, G. (2022). Increasing Interspecific Difference of Alpine HerbPhenology on the Eastern Qinghai-Tibet Plateau. Frontiers in Plant Science, 13
Xu, D., Wang, C., Chen, J., Shen, M., Shen, B.,Yan, R., Li, Z., Karnieli, A., Chen, J., Yan, Y., Wang, X., Chen, B., Yin, D.,& Xin, X. (2021). The superiority of the normalized difference phenologyindex (NDPI) for estimating grassland aboveground fresh biomass. Remote Sensingof Environment, 264, 112578
Wang, Y., Liang, E., Lu, X., Camarero, J.J., Babst, F., Shen,M., & Peñuelas, J. (2021). Warming‐induced shrubline advance stalled bymoisture limitation on the Tibetan Plateau. Ecography, 44, 1631-1641
Tian, J., Zhu, X., Chen, J., Wang, C., Shen, M.,Yang, W., Tan, X., Xu, S., & Li, Z. (2021). Improving the accuracy ofspring phenology detection by optimally smoothing satellite vegetation indextime series based on local cloud frequency. ISPRS Journal of Photogrammetry andRemote Sensing, 180, 29-44
Shi, C., Gao, C., Zhang, Y., Shi, F., Shen, M.,& Shi, S. (2021). The majority of tree growth on the monsoonal TibetanPlateau has benefited from recent summer warming. CATENA, 207, 105649
Ram Sigdel, S., Pandey, J., Liang, E., Muhammad, S.,Babst, F., Leavitt, S.W., Shen, M., Zhu, H., Salerno, F., Piao, S.,Julio Camarero, J., & Peñuelas, J. (2021). No benefits from warming evenfor subnival vegetation in the central Himalayas. Science Bulletin
Peng, D., Wang, Y., Xian, G., Huete, A.R., Huang, W., Shen,M., Wang, F., Yu, L., Liu, L., Xie, Q., Liu, L., & Zhang, X. (2021).Investigation of land surface phenology detections in shrublands using multiplescale satellite data. Remote Sensing of Environment, 252, 112133
Pan, N., Wang, S., Wei, F., Shen, M., & Fu, B.(2021). Inconsistent changes in NPP and LAI determined from the parabolic LAIversus NPP relationship. Ecological Indicators, 131, 108134
Kang, S., Zhang, Q., Zhang, Y., Guo, W., Ji, Z., Shen,M., Wang, S., Wang, X., Tripathee, L., Liu, Y., Gao, T., Xu, G., Gao, Y.,Kaspari, S., Luo, X., & Mayewski, P. (2021). Warming and thawing in the Mt.Everest region: A review of climate and environmental changes. Earth-ScienceReviews, 103911
Han, L., Zhang, X., Zhou, W., Shen, M., Huang, Y.,Li, W., & Qian, Y. (2021). Transformation of China’s urbanization andeco-environment dynamics: an insight with location-based population-weighted indicators.Environmental Science and Pollution Research, 28, 16558-16567
Chen, J., Wang, Y., Sun, J., Liang, E., Shen, M.,Yang, B., Jia, X., & Zhang, J. (2021). Precipitation dominants synergiesand trade-offs among ecosystem services across the Qinghai-Tibet Plateau. GlobalEcology and Conservation, e01886
Tian, J., Zhu, X., Wu, J., Shen, M., & Chen,J. (2020). Coarse-Resolution Satellite Images Overestimate Urbanization Effectson Vegetation Spring Phenology. Remote Sensing, 12, 117
Shi, C., Schneider, L., Hu, Y., Shen, M., Sun, C.,Xia, J., Forbes, B.C., Shi, P., Zhang, Y., & Ciais, P. (2020).Warming-induced unprecedented high-elevation forest growth over the monsoonalTibetan Plateau. Environmental Research Letters
Cao, R., Chen, Y., Chen, J., Zhu, X., & Shen, M. (2020).Thick cloud removal in Landsat images based on autoregression of Landsattime-series data. Remote Sensing of Environment, 249, 112001.doi:https://doi.org/10.1016/j.rse.2020.112001
Cao, R., Feng, Y., Liu, X., Shen, M., & Zhou, J. (2020).Uncertainty of Vegetation Green-Up Date Estimated from Vegetation Indices Dueto Snowmelt at Northern Middle and High Latitudes. Remote Sensing, 12(1), 190.
Chen, X., Wang, W., Chen, J., Zhu, X., Shen, M., Gan, L.,& Cao, X. (2020). Does any phenological event defined by remote sensingdeserve particular attention? An examination of spring phenology of winterwheat in Northern China. Ecological Indicators, 116, 106456.doi:https://doi.org/10.1016/j.ecolind.2020.106456
Chen, Y., Cao, R., Chen, J., Zhu, X., Zhou, J., Wang, G.,Shen, M., Chen, X., & Yang, W. (2020). A New Cross-FusionMethod to Automatically Determine the Optimal Input Image Pairs for NDVISpatiotemporal Data Fusion. IEEE Transactions on Geoscience and Remote Sensing,1-1. doi:10.1109/tgrs.2020.2973762
Huang, Q. X., Liu, Z. W., He, C. Y., Gou, S. Y., Bai, Y. S., Wang,Y. H., & Shen, M. G. (2020). The occupation of cropland by globalurban expansion from 1992 to 2016 and its implications. Environmental ResearchLetters, 15(8). doi:10.1088/1748-9326/ab858c
Yang, W., Kobayashi, H., Wang, C., Shen, M., Chen, J.,Matsushita, B., . . . Kondoh, A. (2019). A semi-analytical snow-free vegetationindex for improving estimation of plant phenology in tundra and grasslandecosystems. Remote Sensing of Environment, 228, 31-44.doi:https://doi.org/10.1016/j.rse.2019.03.028
Cong, N., Shen, M. G., Zu, J. X., & Zhang, Y. J. (2019).Spatial sampling inconsistency leads to differences in phenological sensitivityto warming between natural and experiment sites. Science Bulletin, 64(14),961-963. doi:10.1016/j.scib.2019.05.001
Liu, L., Cao, R., Shen, M., Chen, J., Wang, J., & Zhang,X. (2019). How Does Scale Effect Influence Spring Vegetation PhenologyEstimated from Satellite-Derived Vegetation Indexes? Remote Sensing, 11(18),2137.
Piao, S., Liu, Q., Chen, A., Janssens, I.A., Fu, Y., Dai,J., Liu, L., Lian, X., Shen, M., & Zhu, X. (2019). Plantphenology and global climate change: Current progresses and challenges. GlobalChange Biology, 25(6), 1922-1940. doi:10.1111/gcb.14619
Rao, Y., Liang, S., Wang, D., Yu, Y., Song, Z., Zhou, Y.,Shen, M., & Xu, B. (2019). Estimating daily average surface airtemperature using satellite land surface temperature and top-of-atmosphereradiation products over the Tibetan Plateau. Remote Sensing of Environment,234, 111462. doi:10.1016/j.rse.2019.111462
Shi, C., Shen, M., Wu, X., Cheng, X., Li, X., Fan,T., Li, Z., Zhang, Y., Fan, Z., Shi, F., & Wu, G. (2019). Growthresponse of alpine treeline forests to a warmer and drier climate on thesoutheastern Tibetan Plateau. Agricultural and Forest Meteorology, 264, 73-79.doi:10.1016/j.agrformet.2018.10.002
Shi, C.M., Sun, C., Wu, G.C., Wu, X.C., Chen, D.L.,Masson-Delmotte, V., Li, J.P., Xue, J.Q., Li, Z.S., Ji, D.Y., Zhang, J., Fan,Z.X., Shen, M.G., Shu, L.F., & Ciais, P. (2019). SummerTemperature over the Tibetan Plateau Modulated by Atlantic MultidecadalVariability. Journal of Climate, 32(13), 4055-4067.doi:10.1175/jcli-d-17-0858.1
Yin, J., Wu, X.X., Shen, M.G., Zhang, X.L., Zhu,C.H., Xiang, H.X., Shi, C.M., Guo, Z.Y., & Li, C.L. (2019). Impactof urban greenspace spatial pattern on land surface temperature: a case studyin Beijing metropolitan area, China. Landscape Ecology, 34(12), 2949-2961.doi:10.1007/s10980-019-00932-6
Liu, D., Li, Y., Wang, T., Peylin, P., MacBean, N.,Ciais, P., Jia, G.S., Ma, M.G., Ma, Y.M., Shen, M.G., Zhang, X.Z., &Piao, S.L. (2018). Contrasting responses of grassland water and carbon exchanges toclimate change between Tibetan Plateau and Inner Mongolia. Agricultural andForest Meteorology, 249, 163-175. doi:10.1016/j.agrformet.2017.11.034
Yang, J., Ji, Z., Chen, D., Kang, S., Fu, C., Duan, K., & Shen,M. (2018). Improved Land Use and Leaf Area Index Enhances WRF-3DVARSatellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulationin the Shule River Basin during July 2013. Advances in Atmospheric Sciences,35(6), 628-644. doi:10.1007/s00376-017-7120-4
Cao, R., Chen, Y., Shen, M., Chen, J., Zhou, J., Wang, C.,& Yang, W. (2018). A simple method to improve the quality of NDVItime-series data by integrating spatiotemporal information with theSavitzky-Golay filter. Remote Sensing of Environment, 217, 244-257.doi:https://doi.org/10.1016/j.rse.2018.08.022
Chen, S.L., Chen, X.H., Chen, X., Chen, J., Cao, X., Shen,M.E., Yang, W., & Cui, X.H. (2018). A Novel Cloud RemovalMethod Based on IHOT and the Cloud Trajectories for Landsat Imagery. RemoteSensing, 10(7). doi:10.3390/rs10071040
Chen, X., Wang, D., Chen, J., Wang, C., & Shen, M.(2018). The mixed pixel effect in land surface phenology: A simulation study.Remote Sensing of Environment, 211, 338-344.doi:https://doi.org/10.1016/j.rse.2018.04.030
Tobias, L., Hannes, F., Miaogen, S., Jin, C., & Suresh, R.(2018). Mapping the Distribution and Abundance of Flowering Plants UsingHyperspectral Sensing. In Prasad S. Thenkabail, John G. Lyon, & A. Huete(Eds.), Advanced Applications in Remote Sensing of Agricultural Crops andNatural Vegetation: CRC Press.
Wu, C., Wang, X., Wang, H., Ciais, P., Peñuelas, J.,Myneni, R.B., Desai, A.R., Gough, C.M., Gonsamo, A., Black, A.T., Jassal, R.S.,Ju, W., Yuan, W., Fu, Y., Shen, M., Li, S., Liu, R., Chen, J.M., &Ge, Q. (2018). Contrasting responses of autumn-leaf senescence to daytime andnight-time warming. Nature Climate Change. doi:10.1038/s41558-018-0346-z
姚檀栋, 朴世龙, 沈妙根, 高晶, 杨威, 张国庆, 类延斌, 高杨, 朱立平, 徐柏青, 余武生, 李生海.(2017). 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应. 中国科学院院刊, 2017, 32(9): 976-984
Yao, Y., Wang, X., Li, Y., Wang, T., Shen, M., Du,M., He, H., Li, Y., Luo, W., Ma, M., Ma, Y., Tang, Y., Wang, H., Zhang, X.,Zhang, Y., Zhao, L., Zhou, G., & Piao, S. (2017). Spatiotemporalpattern of gross primary productivity and its covariation with climate in Chinaover the last thirty years. Global Change Biology, doi: 10.1111/gcb.13830.doi:10.1111/gcb.13830
Semakula, H.M., Song, G., Achuu, S.P., Shen, M.,Chen, J., Mukwaya, P.I., Oulu, M., Mwendwa, P.M., Abalo, J., & Zhang, S.(2017).Prediction of future malaria hotspots under climate change in sub-SaharanAfrica. Climatic Change, 143(3), 415-428. doi:10.1007/s10584-017-1996-y
Li, J., Liu, D., Wang, T., Li, Y., Wang, S., Yang, Y.,Wang, X., Guo, H., Peng, S., Ding, J., Shen, M., & Wang, L. (2017). Grasslandrestoration reduces water yield in the headstream region of Yangtze River.Scientific Reports, 7(1), 2162. doi:10.1038/s41598-017-02413-9
Tang, J. W., Korner, C., Muraoka, H., Piao, S. L., Shen, M.G., Thackeray, S. J., & Yang, X. (2016). Emerging opportunities andchallenges in phenology: a review. Ecosphere, 7(8), e01436. doi:ARTN e0143610.1002/ecs2.1436
张宪洲; 杨永平; 朴世龙; 包维楷; 汪诗平; 王根绪; 孙航; 罗天祥; 张扬建; 石培礼; 梁尔源; 沈妙根; 王景升; 高清竹; 张镱锂; 欧阳华 (2015), 科学通报, 3048-3056
Yang, Y., Guan, H., Shen, M., Liang, W., & Jiang, L.(2015). Changes in autumn vegetation dormancy onset date and the climatecontrols across temperate ecosystems in China from 1982 to 2010. Global ChangeBiology, 21(2), 652-665. doi:10.1111/gcb.12778
Piao, S., Tan, J., Chen, A., Fu, Y.H., Ciais, P., Liu,Q., Janssens, I.A., Vicca, S., Zeng, Z., Jeong, S.-J., Li, Y., Myneni, R.B.,Peng, S., Shen, M., & Penuelas, J. (2015).. Leaf onset in thenorthern hemisphere triggered by daytime temperature. Nature Communications, 6,6911. doi:10.1038/ncomms7911
Cao, R., Chen, J., Shen, M., & Tang, Y. (2015). An improvedlogistic method for detecting spring vegetation phenology in grasslands fromMODIS EVI time-series data. Agricultural and Forest Meteorology, 200, 9-20.doi:10.1016/j.agrformet.2014.09.009
Cao, R., Shen, M., Chen, J., & Tang, Y. (2014). A simplemethod to simulate diurnal courses of PAR absorbed by grassy canopy. EcologicalIndicators, 46(0), 129-137. doi:http://dx.doi.org/10.1016/j.ecolind.2014.06.017
Fan, B.H., Guo, L., Li, N., Chen, J., Lin, H., Zhang,X.Y., Shen, M.G., Rao, Y.H., Wang, C., & Ma, L. (2014). Earliervegetation green-up has reduced spring dust storms. Scientific Reports, 4, doi:10.1038/srep06749. doi:Artn 6749 Doi 10.1038/Srep06749
Wang, S., Meng, F., Duan, J., Wang, Y., Cui, X., Piao,S., Niu, H., Xu, G., Luo, C., Zhang, Z., Zhu, X., Shen, M., Li, Y., Du,M., Tang, Y., Zhao, X., Ciais, P., Kimball, B., Peñuelas, J., Janssens, I.,Cui, S., Zhao, L., & Zhang, F. (2014. Asymmetricsensitivity of first flowering date to warming and cooling in alpine plants.Ecology, 95(12), 3387–3398. doi:10.1890/13-2235.1
Yang, W., Chen, J., Matsushita, B., Shen, M., & Chen, X.(2010). Practical image fusion method based on spectral mixture analysis.Science China Information sciences, 53(6), 1277-1286.
Chen, J., Gu, S., Shen, M., Tang, Y., & Matsushita, B.(2009). Estimating aboveground biomass of grassland having a high canopy cover:an exploratory analysis of in situ hyperspectral data. International Journal ofRemote Sensing, 30(24), 6497-6517.
Chen, X. H., Wang, S. Q., Chen, J., Shen, M. G., & Zhu,X. L. (2009). NEW ALGORITHM FOR SPECTRAL MIXTURE ANALYSIS BASED ON FISHERDISCRIMINANT ANALYSIS: EVIDENCE FROM LABORATORY EXPERIMENT. Journal of Infraredand Millimeter Waves, 28(6), 476-480. doi:10.3724/sp.j.1010.2009.00476
朱孝林,李强,沈妙根,陈晋,吴锦. 2008, 基于多时相NDVI数据的复种指数提取方法研究. 自然资源学报,534-544
2019年,2018年度西藏自治区科学技术一等奖(排名第四)
2018年,第三批“万人计划”青年拔尖人才项目
2015年,中国青藏高原研究会第十届青藏高原青年科技奖(个人)
2014年,中国科学院青年创新促进会会员(2019年优秀会员,个人)