En
材料加工工程系
首页 - 师资队伍 - 教工名录 - 材料加工工程系
材料加工工程系

张朝晖

姓 名:

张朝晖


出生年月:

1972年11月


学 位:

工学博士


电 话:

010-68912709-211


职 称:

教授


邮 箱:

zhang@bit.edu.cn

  • 基本信息

           张朝晖,男,教授,博士生导师,北京市优秀人才支持计划获得者。Carbon, Acta Materialia, Scripta Materialia, Composite Science and Technology, Materials & Design, Materials Science and Engineering A, Journal of Alloys and Compound等国际学术期刊审稿人;Journal of American Ceramic Society客座编辑(Contributing Editor);中国机械工程学会模具专业委员会委员;国家自然科学基金委员会基金项目通讯(网络)评议人;机械工业出版社社外编辑。主要从事新型陶瓷防护材料、先进金属陶瓷复合材料、纳米材料、新材料的放电等离子烧结制备技术等领域的研究工作。主讲材料科学与工程专业本科生课程《液压传动与控制》、《铸造工程基础》、《复合材料》、《专业英语》;硕士研究生课程《弹塑性力学原理》;博士研究生课程《计算材料学》。主持国家自然科学基金、装发应用转化、国防973计划专题、装发预研、国防科工基础、装发预研基金、国防科技重点实验室基金等科研项目20余项。已发表学术论文100余篇,其中SCI收录80余篇,SCI论文他引超过千次。主编国家级规划教材1部,撰写国防科技图书出版基金资助专著2部,出版有限元著作6部,著作总印数达10万册。作为第1发明人申请国家、国防发明专利40余件,已授权31件。获兵工高校优秀教材一等奖1项(排名第1),获国防科技发明二等奖1项,获Elsevier出版社以及美陶颁发的Top Reviewer(年度最佳审稿人)奖各1项。

    更多
  • 教育经历

    1990年9月至1994年7月,洛阳工学院学习并获得机械设计学士学位;1994年9月至1997年7月,洛阳工学院学习并获得复合材料硕士学位;1997年9月至2000年7月,北京理工大学学习并获得机械制造与自动化博士学位。

    更多
  • 工作经历

    2000年博士毕业后一直在北京理工大学材料学院工作至今。

    更多
  • 研究领域

    新型陶瓷防护材料;先进金属陶瓷复合材料;纳米材料;新材料的放电等离子烧结制备技术。

    更多
  • 代表论著

    [1] 张朝晖 著,《放电等离子烧结技术及其在钛基复合材料制备中的应用》,国防工业出版社,2018
    [2] 张朝晖 主编,《ANSYS16.1结构分析工程应用及实例解析.第4版》,机械工业出版社,2016
    [3] 张朝晖 主编,《ANSYS12.0热分析工程应用》,中国铁道出版社 2010
    [4] 张朝晖 编著,《ANSYS有限元理论与工程应用.2版》,电子工业出版社,2008
    [5] 王富耻,张朝晖 著,《静液挤压技术》,国防工业出版社,2008
    [6] 张朝晖 主编,《计算机在材料科学与工程中的应用》,2008,中南大学出版社
    [7] 张朝晖,蔡玉强 编著,《Pro/ENGINEER野火2版精彩实例教程》, 北京大学出版社,2006
    [8] 张朝晖,姜开宇,赵丹阳 编著,《SolidWorks 2005精彩实例教程》,北京大学出版社,2006
    [9] 张朝晖,王富耻,王鲁,李树奎 编著,《ANSYS工程应用范例入门与提高》,清华大学出版社,2004
    [10] Q. Wang, Z.H. Zhang*, T.J. Su, X.W. Cheng*, X.Y. Li, S.Z. Zhang, J.Y. He. A TiB whisker-reinforced titanium matrix composite with controllable orientation: A novel method and superior strengthening effect, Materials Science and Engineering: A, 2022, 830: 142309.
    [11] X.Y. Li, Z.H. Zhang*, X.W. Cheng*, G.J. Huo, Q. Song, Y. Xu. Direct achievement of ultra-high strength and good ductility for high CoNi secondary hardening steel by combining spark plasma sintering and deformation, Materials Letters, 2021, 290: 129465.
    [12] Z.Y. Hu, Z.H. Zhang*, X.W. Cheng*, F.C. Wang, Y.F. Zhang, S.L. Li. A review of multi-physical fields induced phenomena and effects in spark plasma sintering- Fundamentals and applications, Materials and Design, 2020, 191: 108662.
    [13] Q. Song, Z.H. Zhang*, Z.Y. Hu, S.P. Yin, H. Wang, X.Y. Li, X.W. Cheng*. Influences of the pre-oxidation time on the microstructure and flexural strength of monolithic B4C ceramic and TiB2-SiC-B4C composite, Journal of Alloys and Compounds, 2020, 831: 154852.
    [14] Q. Song, Z.H. Zhang*, Z.Y. Hu, H. Wang, Y.F. Zhang, X.Y. Li, X.W. Cheng*. Mechanical properties and pre-oxidation behavior of spark plasma sintered B4C ceramics using (Ti3SiC2+CeO2/La2O3) as sintering aid, Ceramics International, 2020, 46: 22189-22196.
    [15] Q. Song, S.P. Yin, Z.H. Zhang*, Z.Y. Hu. Microstructure and mechanical properties of super-hard B4C ceramic fabricated by spark plasma sintering with (Ti3SiC2+Si) as sintering aid. Ceramics International. 2019, 45: 8790-8797.
    [16] Z.Y. Hu, Z.H. Zhang*, X.W. Cheng. Microstructure evolution and tensile properties of Ti-(AlxTiy) core-shell structured particles reinforced aluminum matrix composites after hot-rolling/heat-treatment, Materials Science and Engineering: A, 2018, 737: 90-93.
    [17] S.P. Yin, Z.H. Zhang*, X.W. Cheng. Spark plasma sintering of B4C-TiB2-SiC composite ceramics using B4C, Ti3SiC2 and Si as starting materials. Ceramics International. 2018, 44: 21626-21632.
    [18] Z.Y. Hu, Z.H. Zhang*, X.W. Cheng. A rapid route for synthesizing Ti-(AlxTiy/UFG Al) core-multishell structured particles reinforced Al matrix composite with promising mechanical properties. Materials Science & Engineering A. 2018, 721: 61-64.
    [19] H. Wang, Z.H. Zhang*, Z.Y. Hu. Improvement of interfacial interaction and mechanical properties in copper matrix composites reinforced with copper coated carbon nanotubes. Materials Science & Engineering A. 2018, 715: 163-173.
    [20] Z.Y. Hu, X.W. Cheng, H.M. Zhang, Z.H. Zhang*. Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB+TiC)/TC4 composites. Journal of Alloys and Compounds, 2017, 726: 240-253.
    [21] H. Wang, Z.H. Zhang*, H.M. Zhang, Z.Y. Hu. Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes. Materials Science & Engineering A, 2017, 696: 80-89.
    [22] Z.Y. Hu, X.W. Cheng, Z.H. Zhang*, H. Wang. The influence of defect structures on the mechanical properties of Ti-6Al-4V alloys deformed by high-pressure torsion at ambient temperature. Materials Science and Engineering: A. 2017, 684: 1-13.
    [23] F.C. Wang, Z.H. Zhang*, Y.J. Sun, Z.Y. Hu. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites, Carbon. 2015, 95: 396-407.
    [24] Z.F. Liu, Z.H. Zhang*, J.F. Lu, F.C. Wang. Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum. Materials & Design. 2014, 64: 625-630.
    [25] Z.F. Liu, Z.H. Zhang*, F.C. Wang. A novel and rapid route for synthesizing nanocrystalline aluminum. Materials Science and Engineering: A. 2014, 615: 320-323.
    [26] Z. H. Zhang*, F.C. Wang, Y.D. Wang. The sintering mechanism in spark plasma sintering – Proof of the occurrence of spark discharge. Scripta Materialia. 2014, 81: 56-59.
    [27] S. Wei, Z.H. Zhang*, F.C. Wang. Effect of Ti content and sintering temperature on the microstructures and mechanical properties of TiB reinforced titanium composites synthesized by SPS process. Materials Science and Engineering A. 2013, 560(10-11): 249-255.
    [28] Z.H. Zhang*, X.B. Shen, F.C. Wang. Microstructure characteristics and mechanical properties of TiB/Ti-1.5Fe-2.25Mo composites synthesized in situ using SPS process. Transactions of Nonferrous Metals Society of China. 2013, 23(9): 2958-2604.
    [29] Z.H. Zhang*, X.B. Shen, F.C. Wang. A new rapid route to in-situ synthesize TiB-Ti system functionally graded materials using spark plasma sintering method. Materials Science and Engineering A. 2013, 565: 326-332.
    [30] Z.H. Zhang*, L. Qi, X.B. Shen, F.C. Wang. Microstructure and mechanical properties of bulk carbon nanotubes compacted by spark plasma sintering. Materials Science and Engineering A. 2013, 573: 12-17.

    更多